精英家教網 > 高中數學 > 題目詳情

【題目】為了引導居民合理用電,國家決定實行合理的階梯電價,居民用電原則上以住宅為單位(一套住宅為一戶).

階梯級別

第一階梯

第二階梯

第三階梯

月用電范圍(度)

(0,210]

(210,400]

某市隨機抽取10戶同一個月的用電情況,得到統計表如下:

居民用電戶編號

1

2

3

4

5

6

7

8

9

10

用電量(度)

53

86

90

124

132

200

215

225

300

410

若規定第一階梯電價每度0.5元,第二階梯超出第一階梯的部分每度0.6元,第三階梯超出第二階梯的部分每度0.8元,試計算A居民用電戶用電410度時應電費多少元?

現要在這10戶家庭中任意選取3戶,求取到第二階梯電量的戶數的分布列與期望;

以表中抽到的10戶作為樣本估計全市的居民用電,現從全市中依次抽取10戶,若抽到戶用電量為第一階梯的可能性最大,求的值.

【答案】(1)分布列見解析, (2)

【解析】試題分析:110戶共有3戶為第二階梯電量用戶,所以可取0,1,2,3,分別求其概率,即可列出分布列,計算期望;2由題意抽到的戶數符合二項分布,設抽到K戶概率最大,解不等式組,再根據即可求出.

試題解析:

1

設取到第二階梯電量的用戶數為,可知第二階梯電量的用戶有3戶,則可取0,1,2,3

的分布列是

0

1

2

3

所以

可知從全市中抽取10戶的用電量為第一階梯,滿足,可知

,解得,

所以當時,概率最大,所以

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知關于的不等式.

(1)當時,解不等式;

(2)如果不等式的解集為空集,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知甲、乙兩車由同一起點同時出發,并沿同一路線(假定為直線)行駛.甲車、乙車的速度曲線分別為V和V(如圖所示).那么對于圖中給定的t0和t1 , 下列判斷中一定正確的是(
A.在t1時刻,甲車在乙車前面
B.t1時刻后,甲車在乙車后面
C.在t0時刻,兩車的位置相同
D.t0時刻后,乙車在甲車前面

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知f(x)=xlnx,g(x)=﹣x2+ax﹣3. (Ⅰ)求函數f(x)在[t,t+1](t>0)上的最小值;
(Ⅱ)對一切x∈(0,+∞),2f(x)≥g(x)恒成立,求實數a的取值范圍;
(Ⅲ)證明:對一切x∈(0,+∞),都有lnx> 成立.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數y=Asin(ωx+φ)在一個周期內的圖象如圖,此函數的解析式為(
A.y=2sin(2x+ )??
B.y=2sin(2x+ )??
C.y=2sin( )??
D.y=2sin(2x﹣

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某廠生產產品x件的總成本C(x)=1000+x2(萬元),已知產品單價P(萬元)與產品件數x滿足:P2= ,生產100件這樣的產品單價為50萬元.
(1)設產量為x件時,總利潤為L(x)(萬元),求L(x)的解析式;
(2)產量x定為多少時總利潤L(x)(萬元)最大?并求最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)若函數上是減函數,求實數的取值范圍;

(2)當時,分別求函數的最小值和的最大值,并證明當時, 成立;

(3)令,當時,判斷函數有幾個不同的零點并證明.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 .

(1)當時,

①求曲線在點處的切線方程;

②求函數在區間上的值域.

(2)對于任意,都有,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設點P、Q分別在直線3x﹣y+5=0和3x﹣y﹣13=0上運動,線段PQ中點為M(x0 , y0),且x0+y0>4,則 的取值范圍為

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视