【題目】已知函數.
(1)討論的單調性;
(2)若對于任意的,都有
成立,求正整數k的最大值.
科目:高中數學 來源: 題型:
【題目】設是數列
的前
項和,對任意
都有
成立(其中
是常數).
(1)當時,求
:
(2)當時,
①若,求數列
的通項公式:
②設數列中任意(不同)兩項之和仍是該數列中的一項,則稱該數列是“
數列”,如果
,試問:是否存在數列
為“
數列”,使得對任意
,都有
,且
,若存在,求數列
的首項
的所有取值構成的集合;若不存在.說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某城市要建造一個邊長為的正方形市民休閑公園
,將其中的區域
開挖成一個池塘,如圖建立平面直角坐標系后,點
的坐標為
,曲線
是函數
圖像的一部分,過對邊
上一點
的區域
內作一次函數
的圖像,與線段
交于點
(點
不與點
重合),且線段
與曲線
有且只有一個公共點
,四邊形
為綠化風景區.
(1)寫出函數關系式;
(2)設點的橫坐標為
,將四邊形
的面積
表示成關于
的函數
,并求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(Ⅰ)若的值域為
,求
的值;
(Ⅱ)巳,是否存在這祥的實數
,使函數
在區間
內有且只有一個零點.若存在,求出
的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給定兩個命題,p:對任意實數x都有x2+ax+1≥0恒成立;q:冪函數y=xa-1在(0,+∞)內單調遞減;如果p與q中有且僅有一個為真命題,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知雙曲線的左右頂點分別為
.直線
和兩條漸近線交于點
,點
在第一象限且
,
是雙曲線上的任意一點.
(1)求雙曲線的標準方程;
(2)是否存在點P使得為直角三角形?若存在,求出點P的個數;
(3)直線與直線
分別交于點
,證明:以
為直徑的圓必過定點.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com