精英家教網 > 高中數學 > 題目詳情

【題目】函數f(x)= 的定義域為(
A.(﹣1,1]
B.(﹣1,0)∪(0,1]
C.(﹣1,1)
D.(﹣1,0)∪(0,1)

【答案】B
【解析】解:要使原函數有意義,則 ,解得:﹣1<x≤1,且x≠0.
∴函數f(x)= 的定義域為(﹣1,0)∪(0,1].
故選:B.
【考點精析】關于本題考查的函數的定義域及其求法,需要了解求函數的定義域時,一般遵循以下原則:①是整式時,定義域是全體實數;②是分式函數時,定義域是使分母不為零的一切實數;③是偶次根式時,定義域是使被開方式為非負值時的實數的集合;④對數函數的真數大于零,當對數或指數函數的底數中含變量時,底數須大于零且不等于1,零(負)指數冪的底數不能為零才能得出正確答案.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】函數f(x)=ax2+2(a﹣3)x+1在區間[﹣2,+∞)上遞減,則實數a的取值范圍是(
A.(﹣∞,﹣3]
B.[﹣3,0]
C.[﹣3,0)
D.[﹣2,0]

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在一次水下考古活動中,某一潛水員需潛水50米到水底進行考古作業,其用氧量包含以下三個方面:

①下潛平均速度為米/分鐘,每分鐘的用氧量為升;

②水底作業時間范圍是最少10分鐘最多20分鐘,每分鐘用氧量為0.3升;

③返回水面時,平均速度為米/分鐘,每分鐘用氧量為0.32升;潛水員在此次考古活動中的總用氧量為升.

(1)如果水底作業時間是10分鐘,將表示為的函數;

(2)若,水底作業時間為20分鐘,求總用氧量的取值范圍;

(3)若潛水員攜帶氧氣13.5升,請問潛水員最多在水下多少分鐘(結果取整數)?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓 ,橢圓的長軸為短軸,且與有相同的離心率.

(1)求橢圓的方程;

(2)設為坐標原點,點分別在橢圓上, ,求直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖1,2,在Rt△ABC中,AB=BC=4,點E在線段AB上,過點E作交AC于點F,將△AEF沿EF折起到△PEF的位置(點A與P重合),使得∠PEB=60°.

(1)求證:EF⊥PB;
(2)試問:當點E在何處時,四棱錐P﹣EFCB的側面的面積最大?并求此時四棱錐P﹣EFCB的體積及直線PC與平面EFCB所成角的正切值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知集合M={f(x)|f2(x)﹣f2(y)=f(x+y)f(x﹣y),x,y∈R},有下列命題
①若f(x)= ,則f(x)∈M;
②若f(x)=2x,則f(x)∈M;
③f(x)∈M,則y=f(x)的圖象關于原點對稱;
④f(x)∈M,則對于任意實數x1 , x2(x1≠x2),總有 <0成立;
其中所有正確命題的序號是 . (寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,橢圓M: =1(a>b>0)的離心率為 ,直線x=±a和y=±b所圍成的矩形ABCD的面積為8.
(Ⅰ)求橢圓M的標準方程;
(Ⅱ)設直線l:y=x+m(m∈R)與橢圓M有兩個不同的交點P,Q,l與矩形ABCD有兩個不同的交點S,T.求 的最大值及取得最大值時m的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知 是定義在(﹣∞,+∞)上的奇函數,且滿足
(1)求實數a,b,并確定函數f(x)的解析式
(2)用定義證明f(x)在(﹣1,1)上是增函數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C (b>0)的離心率為A(,0), B(0,b),O(0,0),OAB的面積為1.

(1)求橢圓C的方程;

(2)設P是橢圓C上一點,直線PAy軸交于點M,直線PBx軸交于點N.求證:|AN|·|BM|為定值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视