精英家教網 > 高中數學 > 題目詳情

已知f(x)=(x-1)2,數列{an}是首項為a1,公差為d的等差數列;{bn}是首項為b1,公比為q(q∈R且q≠1)的等比數列,且滿足a1=f(d-1),a3=f(d+1),b1=f(q+1),b3=f(q-1).
(Ⅰ)求數列{an}和{bn}的通項公式;
(Ⅱ)若存在cn=an•bn(n∈N*),試求數列{cn}的前n項和;
(Ⅲ)是否存在數列{dn},使得數學公式對一切大于1的正整數n都成立,若存在,求出{dn};若不存在,請說明理由.

解:(Ⅰ)由題意可得,a3-a1=d2-(d-2)2=2d
∴d=2
由等差數列的通項公式可得,an=2n-2(n∈N*);
∵b3=(q-2)2=q2•q2
∴q2±q?2=0∴q=-2
∴bn=(-2)n+1(n∈N*).
(Ⅱ)由(I)可得,Cn=an•bn=2(n-1)•(-2)n+1
∴Sn=2×0×(-2)2+2×1×(-2)3+2(n-1)×(-2)n+1
-2Sn=2×0×(-2)3+2×1×(-2)4+…+(2(n-1)•(-2)n+2
錯位相減法,可得
(Ⅲ)假設存在滿足條件的數列{dn},則有d1=a2=2,且有
dn=(-2)n-1-2dn-1,兩邊同除以(-2)n-1可得
,則有
故{An}是首項為-1,公差為的等差數列,則,
故dn=(n+1)(-2)n-1
分析:(I)利用等差數列及等比數列的通項公式可求公差d及公比q,代入到等差數列及等比數列的通項公式可求
(II)由(I)可求Cn,結合數列Cn的特點,考慮利用錯位相減法求和即可
(III)假設存在滿足條件的數列{dn},則有d1=a2=2,且有代入整理可得,利用等差數列的通項可求
點評:本題主要考查了等差數列與等比數列的通項公式的求解、而錯位相減法求解數列的和一直是數列求和中的重點和難點,構造特殊的數列(等差、等比)是數列通項求解的難點.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知f (x)=sin (x+
π
2
),g (x)=cos (x-
π
2
),則下列命題中正確的是(  )
A、函數y=f(x)•g(x)的最小正周期為2π
B、函數y=f(x)•g(x)是偶函數
C、函數y=f(x)+g(x)的最小值為-1
D、函數y=f(x)+g(x)的一個單調增區間是[-
4
4
]

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)=
1,x<0
2,x≥0
,g(x)=
3f(x-1)-f(x-2)
2

(1)當1≤x<2時,求g(x);
(2)當x∈R時,求g(x)的解析式,并畫出其圖象;
(3)求方程xf[g(x)]=2g[f(x)]的解.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f (x)=2sin(x+
θ
2
)cos(x+
θ
2
)+2
3
cos2(x+
θ
2
)-
3

(1)化簡f (x)的解析式;
(2)若0≤θ≤π,求θ使函數f (x)為偶函數;
(3)在(2)成立的條件下,求滿足f (x)=1,x∈[-π,π]的x的集合.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知f(x)是定義在R上的奇函數,當x≥0時,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數f(x)在區間(-∞,0)上的單調性;
(Ⅲ)若數學公式,設g(x)是函數f(x)在區間[0,+∞)上的導函數,問是否存在實數a,滿足a>1并且使g(x)在區間數學公式上的值域為數學公式,若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:2011年高三數學第一輪基礎知識訓練(20)(解析版) 題型:解答題

已知f(x)是定義在R上的奇函數,當x≥0時,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數f(x)在區間(-∞,0)上的單調性;
(Ⅲ)若,設g(x)是函數f(x)在區間[0,+∞)上的導函數,問是否存在實數a,滿足a>1并且使g(x)在區間上的值域為,若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视