精英家教網 > 高中數學 > 題目詳情

【題目】根據市場分析,某蔬菜加工點,當月產量為10噸至25噸時,月生產總成本(萬元)可以看出月產量(噸)的二次函數,當月產量為10噸時,月生產成本為20萬元,當月產量為15噸時,月生產總成本最低至17.5萬元.

(I)寫出月生產總成本(萬元)關于月產量噸的函數關系;

(II)已知該產品銷售價為每噸1.6萬元,那么月產量為多少噸時,可獲得最大利潤,并求出最大利潤.

【答案】(Ⅰ); (Ⅱ)月產量為23噸時,最大利潤為萬元.

【解析】

(I)設出函數解析式,代入(10,20),可得函數解析式;

(II)列出函數解析式,利用配方法,可求最大利潤.

(I)由已知可知

又因為時,,所以,得

所以.

(II))設利潤(萬元),

,

因為上單調遞增,在上單調遞減,

所以.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知fx=-3x2+a6-ax+6.

1解關于a的不等式f1>0;

2若不等式fx>b的解集為-1,3,求實數a,b的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】底面為正方形的四棱錐P﹣ABCD,F為PD中點.

(1)求證:PB∥面ACF;
(2)若PD⊥面ABCD,求證:AC⊥面PBD.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知曲線C的極坐標方程是ρ=2cosθ,以極點為平面直角坐標系的原點,極軸為x軸的正半軸,建立平面直角坐標系,直線L的參數方程是 (t為參數).
(1)求曲線C的直角坐標方程和直線L的普通方程;
(2)設點P(m,0),若直線L與曲線C交于A,B兩點,且|PA||PB|=1,求實數m的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數(其中),若對任意的恒成立,則實數的取值范圍是________________.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖給出了一個程序框圖,其作用是輸入x的值,輸出相應的y值.若要使輸入的x值與輸出的y值相等,則這樣的x值有(

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,經過點且斜率為的直線與橢圓有兩個不同的交點

(1)求的取值范圍;

(2)設橢圓與軸正半軸、軸正半軸的交點分別為,是否存在常數,使得向量共線?如果存在,求值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知單調遞增的等比數列{an}滿足a2+a3+a4=28,且a3+2是a2 , a4的等差中項.
(1)求數列{an}的通項公式;
(2)設bn=anlog2an , 其前n項和為Sn , 若(n﹣1)2≤m(Sn﹣n﹣1)對于n≥2恒成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=(3﹣a)x﹣2+a﹣2lnx(a∈R)
(1)若函數y=f(x)在區間(1,3)上單調,求a的取值范圍;
(2)若函數g(x)=f(x)﹣x在(0, )上無零點,求a的最小值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视