【題目】某同學大學畢業后,決定利用所學專業進行自主創業,經過市場調查,生產一小型電子產品需投入固定成本2萬元,每生產萬件,需另投入流動成本
萬元,當年產量小于
萬件時,
(萬元);當年產量不小于7萬件時,
(萬元).已知每件產品售價為6元,假若該同學生產的商品當年能全部售完.
(1)寫出年利潤(萬年)關于年產量
(萬件)的函數解析式;(注:年利潤=年銷售收入-固定成本-流動成本)
(2)當年產量約為多少萬件時,該同學的這一產品所獲年利潤最大?最大年利潤是多少?
(取).
科目:高中數學 來源: 題型:
【題目】已知,
都是各項為正數的數列,且
,
.對任意的正整數n,都有
,
,
成等差數列,
,
,
成等比數列.
(1)求數列和
的通項公式;
(2)若存在p>0,使得集合M=恰有一個元素,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若函數的圖象上存在關于直線
對稱的不同兩點,則稱
具有性質
.已知
為常數,函數
,
,對于命題:①存在
,使得
具有性質
;②存在
,使得
具有性質
,下列判斷正確的是( )
A.①和②均為真命題B.①和②均是假命題
C.①是真命題,②是假命題D.①是假命題,②是真命題
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某大型單位舉行了一次全體員工都參加的考試,從中隨機抽取了20人的分數.以下莖葉圖記錄了他們的考試分數(以十位數字為莖,個位數字為葉):
若分數不低于95分,則稱該員工的成績為“優秀”.
(1)從這20人中任取3人,求恰有1人成績“優秀”的概率;
(2)根據這20人的分數補全下方的頻率分布表和頻率分布直方圖,并根據頻率分布直方圖解決下面的問題.
組別 | 分組 | 頻數 | 頻率 | |
1 | ||||
2 | ||||
3 | ||||
4 |
①估計所有員工的平均分數(同一組中的數據用該組區間的中點值作代表);
②若從所有員工中任選3人,記表示抽到的員工成績為“優秀”的人數,求
的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從某學校高三年級共800名男生中隨機抽取50名學生作為樣本測量身高.測量發現被測學生身高全部介于155cm和195cm之間,將測量結果按如下方式分成八組:第一組;第二組
;…;第八組
.下圖是按上述分組方法得到的頻率分布直方圖的一部分.已知第一組與第八組人數相同,第六組與第八組人數之和為第七組的兩倍.
(1)估計這所學校高三年級全體男生身高在180cm以上(含180cm)的人數;
(2)求第六組和第七組的頻率并補充完整頻率分布直方圖.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知梯形中,
,
,
是
的中點.
,
、
分別是
、
上的動點,且
,設
(
),沿
將梯形
翻折,使平面
平面
,如圖.
(1)當時,求證:
;
(2)若以、
、
、
為頂點的三棱錐的體積記為
,求
的最大值;
(3)當取得最大值時,求二面角
的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓,直線
,
.
(1)求證:對,直線
與圓
總有兩個不同的交點
;
(2)求弦的中點
的軌跡方程,并說明其軌跡是什么曲線;
(3)是否存在實數,使得原
上有四點到直線
的距離為
?若存在,求出
的范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某縣位于沙漠地帶,人與自然長期進行頑強的斗爭,到1998年底全縣的綠化率已達到30%。從1999年開始,每年將出現這樣的局面,即原有沙漠面積的16%將被綠化,與此同時,由于各種原因,原有綠化面積的4%又被沙化。
(1)設全縣面積為1,1998年底綠化總面積為,經過n年后綠化總面積為
,求證:
。
(2)至少需要多少年的努力,才能使全縣的綠化率超過60%?(年取整數,lg2=0.3010)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com