(本小題滿分13分)
已知橢圓的中點在原點O,焦點在x軸上,點是其左頂點,點C在橢圓上且
·
="0," |
|=|
|.(點C在x軸上方)
(I)求橢圓的方程;
(II)若平行于CO的直線和橢圓交于M,N兩個不同點,求
面積的最大值,并求此時直線
的方程.
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
已知拋物線C1:y2=4x的焦點與橢圓C2:的右焦點F2重合,F1是橢圓的左焦點;
(Ⅰ)在ABC中,若A(-4,0),B(0,-3),點C在拋物線y2=4x上運動,求
ABC重心G的軌跡方程;
(Ⅱ)若P是拋物線C1與橢圓C2的一個公共點,且∠PF1F2=,∠PF2F1=
,求cos
的值及
PF1F2的面積。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
已知橢圓的中心在原點,焦點在軸上,長軸長是短軸長的2倍且經過點M(2,1),平行于OM的直線
在
軸上的截距為
,
交橢圓于A、B兩個不同點.
(1)求橢圓的方程;
(2)求m的取值范圍;
(3)求證直線MA、MB與軸始終圍成一個等腰三角形.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
已知橢圓,橢圓
以
的長軸為短軸,且與
有相同的離心率.
(1)求橢圓的方程;
(2)設O為坐標原點,點A,B分別在橢圓和
上,
,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
橢圓C:=1(a>b>0)的兩個焦點分別為F1(﹣c,0),F2(c,0),M是橢圓短軸的一個端點,且滿足
=0,點N( 0,3 )到橢圓上的點的最遠距離為5
(1)求橢圓C的方程
(2)設斜率為k(k≠0)的直線l與橢圓C相交于不同的兩點A、B,Q為AB的中點,;問A、B兩點能否關于過點P、Q的直線對稱?若能,求出k的取值范圍;若不能,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題12分)已知橢圓的離心率為
,
為橢圓的右焦點,
兩點在橢圓
上,且
,定點
。
(1)若時,有
,求橢圓
的方程;
(2)在條件(1)所確定的橢圓下,當動直線
斜率為k,且設
時,試求
關于S的函數表達式f(s)的最大值,以及此時
兩點所在的直線方程。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線及點
,直線
的斜率為1且不過點P,與拋物線交于A,B兩點。
(1) 求直線在
軸上截距的取值范圍;
(2) 若AP,BP分別與拋物線交于另一點C,D,證明:AD、BC交于定點。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com