【題目】在同一平面直角坐標系中,經過伸縮變換后,曲線
變為曲線
,過點
且傾斜角為
的直線
與
交于
不同的兩點.
(1)求曲線的普通方程;
(2)求的中點
的軌跡的參數方程(以
為參數).
科目:高中數學 來源: 題型:
【題目】中國農業銀行開始為全國農行ATM機安裝刷臉取款系統.某農行營業點為調查居民對刷臉取款知識的了解情況,制作了刷臉取款知識有獎調查問卷,發放給2018年度該行的所有客戶,并從參與調查且年齡(單位:歲)在[25,55]內的客戶中隨機抽取100名給予物質獎勵,再從中選出一名客戶參加幸運大抽獎.調查結果按年齡分成6組,制作成如下的頻數分布表和女客戶的年齡莖葉圖,其中a∶b∶c=2∶4∶5.
年齡/歲 | [25,30) | [30,35) | [35,40) | [40,45) | [45,50) | [50,55] |
頻數/人 | 5 | a | b | c | 15 | 25 |
女客戶的年齡莖葉圖
幸運大抽獎方案如下:客戶最多有兩次抽獎機會,每次抽獎的中獎率均為,第一次抽獎,若未中獎,則抽獎結束.若中獎,則通過拋擲一枚質地均勻的硬幣,決定是否繼續進行第二次抽獎.規定:拋出的硬幣,若反面朝上,則客戶獲得5000元獎金,不進行第二次抽獎;若正面朝上,客戶需進行第二次抽獎,且在第二次抽獎中,如果中獎,則獲得獎金10000元,如果未中獎,則所獲得的獎金為0元.
(1)求a,b,c的值,若分別從男、女客戶中隨機選取1人,求這2人的年齡均在[40,45)內的概率;
(2)若參加幸運大抽獎的客戶所獲獎金(單位:元)用X表示,求X的分布列與數學期望E(X).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業生產的某種產品被檢測出其中一項質量指標存在問題.該企業為了檢查生產該產品的甲、乙兩條流水線的生產情況,隨機地從這兩條流水線上生產的大量產品中各抽取50件產品作為樣本,測出它們的這一項質量指標值.若該項質量指標值落在內,則為合格品,否則為不合格品.如圖是甲流水線樣本的頻數分布表和乙流水線樣本的頻率分布直方圖.
(1)根據頻率分布直方圖,估計乙流水線生產的產品該質量指標值的中位數;
(2)若將頻率視為概率,某個月內甲、乙兩條流水線均生產了5000件產品,則甲、乙兩條流水線分別生產出不合格品約多少件?
(3)根據已知條件完成下面列聯表,并回答是否有
的把握認為“該企業生產的這種產品的質量指標值與甲、乙兩條流水線的選擇有關”?
甲流水線 | 乙流水線 | 合計 | |
合格品 | |||
不合格品 | |||
合計 |
附:,其中
.
臨界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,正三角形ABE與菱形ABCD所在的平面互相垂直,,
,M是AB的中點,N是CE的中點.
(1)求證:;
(2)求證:平面ADE;
(3)求點A到平面BCE的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知點
,
的坐標分別為
,
.直線
,
相交于點
,且它們的斜率之積是
.記點
的軌跡為
.
(Ⅰ)求的方程.
(Ⅱ)已知直線,
分別交直線
于點
,
,軌跡
在點
處的切線與線段
交于點
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,
,其中
.
(1)求過點和函數
的圖像相切的直線方程;
(2)若對任意,有
恒成立,求
的取值范圍;
(3)若存在唯一的整數,使得
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】把函數的圖象向右平移一個單位,所得圖象與函數
的圖象關于直線
對稱;已知偶函數
滿足
,當
時,
;若函數
有五個零點,則
的取值范圍是( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓的左、右頂點分別為
,
,上頂點為B,右焦點為F,已知直線
的傾斜角為120°,
.
(1)求橢圓C的方程;
(2)設P為橢圓C上不同于,
的一點,O為坐標原點,線段
的垂直平分線交
于M點,過M且垂直于
的直線交y軸于Q點,若
,求直線
的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com