精英家教網 > 高中數學 > 題目詳情

【題目】已知數列{an}的前n項和為 (a為常數,n∈N*).
(1)求a1 , a2 , a3;
(2)若數列{an}為等比數列,求常數a的值及an

【答案】
(1)解:a1=S1=2+a,

由S2=a1+a2=22+a,得a2=2,

由S3=a1+a2+a3=23+a,得a3=4


(2)解:因為a1=2+a,當n≥2時,an=Sn﹣Sn1=2n1,

又{an}為等比數列,所以a1=1,即a+2=1,得a=﹣1,

故an=2n1


【解析】(1)由數列的前n項和的定義解答即可;(2)結合a1=2+a,當n≥2時,an=Sn﹣Sn1=2n1 , 等比數列的通項公式進行解答.
【考點精析】解答此題的關鍵在于理解數列的定義和表示的相關知識,掌握數列中的每個數都叫這個數列的項.記作an,在數列第一個位置的項叫第1項(或首項),在第二個位置的叫第2項,……,序號為n的項叫第n項(也叫通項)記作an,以及對等比數列的通項公式(及其變式)的理解,了解通項公式:

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如果曲線2|x|﹣y﹣4=0與曲線x2+λy2=4(λ<0)恰好有兩個不同的公共點,則實數λ的取值范圍是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示是一個三棱臺ABCABC′,試用兩個平面把這個三棱臺分成三部分,使每一部分都是一個三棱錐.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=xlnx
(1)求f(x)在點(1,f(1))處的切線方程;
(2)若函數 在[1,e]上的最小值為 ,求a的值;
(3)若k∈Z,且f(x)+x﹣k(x﹣1)>0對任意x>1恒成立,求k的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知f(x)是定義在R上的偶函數,且在(0,+∞)上是增函數,設a=f(﹣ ),b=f(log3 ),c=f( ),則a、b、c的大小關系是( )
A.a<c<b
B.b<a<c
C.b<c<a
D.c<b<a

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數
(1)求函數f(x)在 上的最大值與最小值;
(2)已知 ,x0∈( , ),求cos4x0的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】△ABC的內角A,B,C的對邊分別為a,b,c,已知sinB+sinA(sinC﹣cosC)=0,a=2,c= ,則C=( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,正方體ABCD﹣A1B1C1D1中,E,F,H分別為A1B1 , B1C1 , CC1的中點.
(Ⅰ)證明:BE⊥AH;
(Ⅱ)在棱D1C1上是否存在一點G,使得AG∥平面BEF?若存在,求出點G的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=
(1)當a=b=1時,求滿足f(x)=3x的x的值;
(2)若函數f(x)是定義在R上的奇函數,
①判斷f(x)在R的單調性并用定義法證明;
②當x≠0時,函數g(x)滿足f(x)[g(x)+2]= (3x﹣3x),若對任意x∈R且x≠0,不等式g(2x)≥mg(x)﹣11恒成立,求實數m的最大值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视