【題目】設橢圓 +
=1(a>b>0)的左焦點為F,右頂點為A,離心率為
.已知A是拋物線y2=2px(p>0)的焦點,F到拋物線的準線l的距離為
.
(Ⅰ)求橢圓的方程和拋物線的方程;
(Ⅱ)設l上兩點P,Q關于x軸對稱,直線AP與橢圓相交于點B(B異于A),直線BQ與x軸相交于點D.若△APD的面積為 ,求直線AP的方程.
【答案】(Ⅰ)解:設F的坐標為(﹣c,0).
依題意可得 ,
解得a=1,c= ,p=2,于是b2=a2﹣c2=
.
所以,橢圓的方程為x2+ =1,拋物線的方程為y2=4x.
(Ⅱ)解:直線l的方程為x=﹣1,設直線AP的方程為x=my+1(m≠0),
聯立方程組 ,解得點P(﹣1,﹣
),故Q(﹣1,
).
聯立方程組 ,消去x,整理得(3m2+4)y2+6my=0,解得y=0,或y=﹣
.
∴B( ,
).
∴直線BQ的方程為( ﹣
)(x+1)﹣(
)(y﹣
)=0,
令y=0,解得x= ,故D(
,0).
∴|AD|=1﹣ =
.
又∵△APD的面積為 ,∴
×
=
,
整理得3m2﹣2 |m|+2=0,解得|m|=
,∴m=±
.
∴直線AP的方程為3x+ y﹣3=0,或3x﹣
y﹣3=0.
【解析】(Ⅰ)根據橢圓和拋物線的定義、性質列方程組求出a,b,p即可得出方程;(Ⅱ)設AP方程為x=my+1,聯立方程組得出B,P,Q三點坐標,從而得出直線BQ的方程,解出D點坐標,根據三角形的面積列方程解出m即可得出答案.
【考點精析】根據題目的已知條件,利用橢圓的標準方程的相關知識可以得到問題的答案,需要掌握橢圓標準方程焦點在x軸:,焦點在y軸:
.
科目:高中數學 來源: 題型:
【題目】設是兩條不同的直線,
是三個不同的平面,給出下列四個命題:①若
,則
; ②若
則
;③若
,則
; ④若
,則
,其中正確命題的序號是( )
A.①和②B.②和③C.③和④D.①和④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了實現綠色發展,避免浪費能源,某市政府計劃對居民用電采用階梯收費的方法.為此,相關部分在該市隨機調查了戶居民六月份的用電量(單位:
)和家庭收入(單位:萬元),以了解這個城市家庭用電量的情況.
用電量數據如下:
.
對應的家庭收入數據如下:
.
(Ⅰ)根據國家發改委的指示精神,該市計劃實施階階梯電價,使
的用戶在第一檔,電價為
元/
;
的用戶在第二檔,電價為
元/
;
的用戶在第三檔,電價為
元/
,試求出居民用電費用
與用電量
間的函數關系;
(Ⅱ)以家庭收入為橫坐標,電量
為縱坐標作出散點圖(如圖),求
關于
的回歸直線方程(回歸直線方程的系數四舍五入保留整數).
(Ⅲ)小明家的月收入元,按上述關系,估計小明家月支出電費多少元?
參考數據:,
,
,
,
.
參考公式:一組相關數據,
,…,
的回歸直線方程
的斜率和截距的最小二乘法估計分別為
,
,其中
,
為樣本均值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知F為拋物線C:y2=4x的焦點,過F作兩條互相垂直的直線l1 , l2 , 直線l1與C交于A、B兩點,直線l2與C交于D、E兩點,則|AB|+|DE|的最小值為( 。
A.16
B.14
C.12
D.10
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法中:
①若,滿足
,則
的最大值為
;
②若,則函數
的最小值為
③若,滿足
,則
的最小值為
④函數的最小值為
正確的有__________.(把你認為正確的序號全部寫上)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著業的迅速發展計算機也在迅速更新換代,平板電腦因使用和移動便捷以及時尚新潮性,而備受人們尤其是大學生的青睞,為了解大學生購買平板電腦進行學習的學習情況,某大學內進行了一次匿名調查,共收到1500份有效問卷.調查結果顯示700名女學生中有300人,800名男生中有400人擁有平板電腦.
(Ⅰ)完成下列列聯表:
(Ⅱ)分析是否有的把握認為購買平板電腦與性別有關?
附:獨立性檢驗臨界值表:
(參考公式:,其中
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱臺形玻璃容器Ⅱ的高均為32cm,容器Ⅰ的底面對角線AC的長為10 cm,容器Ⅱ的兩底面對角線EG,E1G1的長分別為14cm和62cm.分別在容器Ⅰ和容器Ⅱ中注入水,水深均為12cm.現有一根玻璃棒l,其長度為40cm.(容器厚度、玻璃棒粗細均忽略不計)
(Ⅰ)將l放在容器Ⅰ中,l的一端置于點A處,另一端置于側棱CC1上,求l沒入水中部分的長度;
(Ⅱ)將l放在容器Ⅱ中,l的一端置于點E處,另一端置于側棱GG1上,求l沒入水中部分的長度.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com