【題目】如圖,直三棱柱ABC﹣A1B1C1中,側棱AA1⊥平面ABC.若AB=AC=AA1=1,BC= ,則異面直線A1C與B1C1所成的角為( )
A.30°
B.45°
C.60°
D.90°
【答案】C
【解析】解:因為幾何體是棱柱,BC∥B1C1,則直線A1C與BC所成的角為就是異面直線A1C與B1C1所成的角.
直三棱柱ABC﹣A1B1C1中,側棱AA1⊥平面ABC.若AB=AC=AA1=1,BC= ,BA1=
,CA1=
,
三角形BCA1是正三角形,異面直線所成角為60°.
故選:C.
【考點精析】關于本題考查的異面直線及其所成的角,需要了解異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點,作另一條的平行線;2、補形法:把空間圖形補成熟悉的或完整的幾何體,如正方體、平行六面體、長方體等,其目的在于容易發現兩條異面直線間的關系才能得出正確答案.
科目:高中數學 來源: 題型:
【題目】已知橢圓 (a>0,b>0)上的點P到左、右兩焦點F1 , F2的距離之和為2
,離心率為
.
(1)求橢圓的方程;
(2)是否存在同時滿足①②兩個條件的直線l?
①過點M(0, );
②存在橢圓上與右焦點F2共線的兩點A、B,且A、B關于直線l對稱.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知實數p:x2﹣4x﹣12≤0,q:(x﹣m)(x﹣m﹣1)≤0
(1)若m=2,那么p是q的什么條件;
(2)若q是p的充分不必要條件,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直三棱柱ABC﹣A1B1C1中,∠ACB=90°,AC=BC=AA1=2,D、E分別為棱AB、BC的中點,點F在棱AA1上.
(1)證明:直線A1C1∥平面FDE;
(2)若F為棱AA1的中點,求三棱錐A1﹣DEF的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ln(a﹣ )(a∈R).若關于x的方程ln[(4﹣a)x+2a﹣5]﹣f(x)=0的解集中恰好有一個元素,則實數a的取值范圍為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐S﹣ABC中,E為棱SC的中點,若AC=2 ,SA=SB=AB=BC=SC=2,則異面直線AC與BE所成的角為( )
A.30°
B.45°
C.60°
D.90°
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com