【題目】在△ABC中,a,b,c分別為內角A,B,C所對邊的邊長,且C=,a+b=λc(其中λ>1).
(1)若λ=時,證明:△ABC為直角三角形;
(2)若·
=
λ2,且c=3,求λ的值.
【答案】(1)見解析;(2)2
【解析】
(1)利用正弦定理化簡a+b=λc即得B=或B=
,分析得到△ABC為直角三角形.(2)化
簡·
=
λ2得ab=
λ2,再結合余弦定理得到關于λ的值,解方程即得λ的值.
(1)證明:因為λ=,所以a+b=
c,由正弦定理得sin A+sin B=
sin C,
因為C=,所以sin B+sin
=
,所以
sin B+
cos B=
,則sin
=
,所以B+
=
或B+
=
,B=
或B=
.
若B=,則A=
,△ABC為直角三角形;
若B=,△ABC亦為直角三角形.
(2)解:若·
=
λ2,則
a·b=
λ2,所以ab=
λ2.
又a+b=3λ,由余弦定理知a2+b2-c2=2abcos C,即a2+b2-ab=c2=9,即(a+b)2-3ab=9,故9λ2-λ2=
λ2=9,λ2=4,即λ=2.
科目:高中數學 來源: 題型:
【題目】如圖,空間四邊形ABCD中,E,F,G,H分別是AB,BC,CD,DA的中點,且AB=AD,BC=DC.
(1)求證:∥平面EFGH;
(2)求證:四邊形EFGH是矩形.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知命題P:在R上定義運算:x y=(1-x)y.不等式x (1-a)x<1對任意實數x恒成立;命題Q:若不等式≥2對任意的x∈ N*恒成立.若P∧ Q為假命題,P∨ Q為真命題,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,雙曲線 =1(a,b>0)的兩頂點為A1 , A2 , 虛軸兩端點為B1 , B2 , 兩焦點為F1 , F2 . 若以A1A2為直徑的圓內切于菱形F1B1F2B2 , 切點分別為A,B,C,D.則: (Ⅰ)雙曲線的離心率e=;
(Ⅱ)菱形F1B1F2B2的面積S1與矩形ABCD的面積S2的比值 = .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】根據以往的經驗,某工程施工期間的將數量X(單位:mm)對工期的影響如下表:
降水量X | X<300 | 300≤X<700 | 700≤X<900 | X≥900 |
工期延誤天數Y | 0 | 2 | 6 | 10 |
歷年氣象資料表明,該工程施工期間降水量X小于300,700,900的概率分別為0.3,0.7,0.9,求:
(I)工期延誤天數Y的均值與方差;
(Ⅱ)在降水量X至少是300的條件下,工期延誤不超過6天的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐P-ABC中,PA⊥平面ABC,AB⊥AC,PA=AC=3,AB=,BE=
EC,AD=2DC.
(1)證明:DE⊥平面PAE;
(2)求二面角A-PE-B的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,OA是南北方向的一條公路,OB是北偏東45°方向的一條公路,某風景區的一段邊界為曲線C.為方便游客光,擬過曲線C上的某點分別修建與公路OA,OB垂直的兩條道路PM,PN,且PM,PN的造價分別為5萬元/百米,40萬元/百米,建立如圖所示的直角坐標系xoy,則曲線符合函數y=x+ (1≤x≤9)模型,設PM=x,修建兩條道路PM,PN的總造價為f(x)萬元,題中所涉及的長度單位均為百米.
(1)求f(x)解析式;
(2)當x為多少時,總造價f(x)最低?并求出最低造價.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com