【題目】如圖,在三棱錐P-ABC中,PA⊥平面ABC,AB⊥AC,PA=AC=3,AB=,BE=
EC,AD=2DC.
(1)證明:DE⊥平面PAE;
(2)求二面角A-PE-B的余弦值.
【答案】(1)見解析;(2)
【解析】
(1)先證明AB, AC, AP兩兩垂直,然后以點A為原點建立空間直角坐標系,證明=0,
,從而得到DE⊥AE,DE⊥AP,故得結論成立.(2)由題意求得平面PEB的法向量
,又由(1)得
=(1,-1,0)是平面APE的一個法向量,求出
后再結合圖形得到所求的余弦值.
(1)證明:
∵PA⊥平面ABC, AB, AC在平面ABC內,
∴PA⊥AB,PA⊥AC.
又AB⊥AC,
∴AB, AC, AP兩兩垂直,
以點A為坐標原點,AB,AC,AP分別為x,y,z軸建立如圖所示的空間直角坐標系,
由題意得A(0,0,0),B,C(0,3,0),P(0,0,3),
∵BE=EC,
∴E(1,1,0).
∵AD=2DC,
∴D(0,2,0).
∴=(1,-1,0),
=(1,1,0).
∵=0,
∴,
∴DE⊥AE,
同理可得DE⊥AP,
又AP∩AE=A,
∴DE⊥平面PAE.
(2)解設是平面PEB的一個法向量,
則
令z=1,則,
由(1)得=(1,-1,0)是平面APE的一個法向量,
∴cos<,
>=
,
由圖形得二面角A-PE-B為銳角,
∴二面角A-PE-B的余弦值為.
科目:高中數學 來源: 題型:
【題目】下列語句中是命題的有________,其中是真命題的有_____(填序號).
①“垂直于同一條直線的兩個平面必平行嗎?”②“一個數不是正數就是負數”;③“在一個三角形中,大角所對的邊大于小角所對的邊”;④“若x+y為有理數,則x,y都是有理數”;⑤作一個三角形.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=lnx﹣ ax2﹣2x,其中a≤0.
(1)若曲線y=f(x)在點(1,f(1))處的切線方程為y=2x+b,求a﹣2b的值;
(2)討論函數f(x)的單調性;
(3)設函數g(x)=x2﹣3x+3,如果對于任意的x,t∈(0,1],都有f(x)≤g(t)恒成立,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,a,b,c分別為內角A,B,C所對邊的邊長,且C=,a+b=λc(其中λ>1).
(1)若λ=時,證明:△ABC為直角三角形;
(2)若·
=
λ2,且c=3,求λ的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(I)已知函數f(x)=rx﹣xr+(1﹣r)(x>0),其中r為有理數,且0<r<1.求f(x)的最小值;
(II)試用(I)的結果證明如下命題:設a1≥0,a2≥0,b1 , b2為正有理數,若b1+b2=1,則a1b1a2b2≤a1b1+a2b2;
(III)請將(II)中的命題推廣到一般形式,并用數學歸納法證明你所推廣的命題.注:當α為正有理數時,有求導公式(xα)r=αxα﹣1 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】△ABC的內角A,B,C所對的邊分別為a,b,c.向量 =(a,
b)與
=(cosA,sinB)平行.
(1)求A;
(2)若a= ,b=2,求△ABC的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數y=f(x)的導函數y=f'(x)的圖像如圖所示.
則下列說法中正確的是____(填序號).
①函數y=f(x)在區間上單調遞增;
②函數y=f(x)在區間上單調遞減;
③函數y=f(x)在區間(4,5)上單調遞增;
④當x=2時,函數y=f(x)有極小值;
⑤當x=-時,函數y=f(x)有極大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設Sn為數列{an}的前n項和,已知a1≠0,2an﹣a1=S1Sn , n∈N* .
(1)求a1a2 , 并求數列{an}的通項公式,
(2)求數列{nan}的前n項和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“中國式過馬路”存在很大的交通安全隱患.某調查機構為了解路人對“中國式過馬路”的態度是否與性別有關,從馬路旁隨機抽取30名路人進行了問卷調查,得到了如下列聯表:
項目 | 男性 | 女性 | 總計 |
反感 | 10 | ||
不反感 | 8 | ||
總計 | 30 |
已知在這30人中隨機抽取1人抽到反感“中國式過馬路”的路人的概率是.
(1)請將上面的列聯表補充完整(直接寫結果,不需要寫求解過程),并據此資料分析反感“中國式過馬路”與性別是否有關?
(2)若從這30人中的女性路人中隨機抽取2人參加一活動,記反感“中國式過馬路”的人數為X,求X的分布列和數學期望.
附:K2=
.
P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com