已知函數(其中
為常數且
)的圖象經過點
.
(1)求的解析式;
(2)若不等式在
上恒成立,求實數
的取值范圍.
科目:高中數學 來源: 題型:解答題
如圖是某重點中學學校運動場平面圖,運動場總面積15000平方米,運動場是由一個矩形和分別以
、
為直徑的兩個半圓組成,塑膠跑道寬8米,已知塑膠跑道每平方米造價為150元,其它部分造價每平方米80元,
(Ⅰ)設半圓的半徑(米),寫出塑膠跑道面積
與
的函數關系式
;
(Ⅱ)由于受運動場兩側看臺限制,的范圍為
,問當
為何值時,運動場造價最低(第2問
取3近似計算).
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
為了降低能損耗,最近上海對新建住宅的屋頂和外墻都要求建造隔熱層.某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元.該建筑物每年的能消耗費用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關系:C(x)=(0≤x≤10),若不建隔熱層,每年能消耗費用為8萬元.設f(x)為隔熱層建造費用與20年的能消耗費用之和.
(1)求k的值及f(x)的表達式;
(2)隔熱層修建多厚時,總費用f(x)達到最小,并求最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知二次函數,且不等式
的解集為
.
(1)方程有兩個相等的實根,求
的解析式;
(2)的最小值不大于
,求實數
的取值范圍;
(3)如何取值時,函數
存在零點,并求出零點.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com