【題目】已知四棱錐,底面ABCD是邊長為1的正方形,
,平面
平面ABCD,當點C到平面ABE的距離最大時,該四棱錐的體積為( )
A.B.
C.
D.1
科目:高中數學 來源: 題型:
【題目】(本小題滿分13分)如圖,在直角坐標系中,角
的頂點是原點,始邊與
軸正半軸重合.終邊交單位圓于點
,且
,將角
的終邊按逆時針方向旋轉
,交單位圓于點
,記
.
(1)若,求
;
(2)分別過作
軸的垂線,垂足依次為
,記
的面積為
,
的面積為
,若
,求角
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,曲線
的參數方程為
(
為參數且
)曲線
的參數方程為
(
為參數,且
),以
為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為:
,曲線
的極坐標方程為
.
(1)求與
的交點到極點的距離;
(2)設與
交于
點,
與
交于
點,當
在
上變化時,求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)a(x﹣1)2+(x﹣2)ex(a>0).
(1)討論函數f(x)的單調性;
(2)若關于x的方程f(x)a=0存在3個不相等的實數根,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】以直角坐標系xOy的原點為極坐標系的極點,x軸的正半軸為極軸.已知曲線的極坐標方程為
,P是
上一動點,
,Q的軌跡為
.
(1)求曲線的極坐標方程,并化為直角坐標方程,
(2)若點,直線l的參數方程為
(t為參數),直線l與曲線
的交點為A,B,當
取最小值時,求直線l的普通方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業打算處理一批產品,這些產品每箱100件,以箱為單位銷售.已知這批產品中每箱出現的廢品率只有或者
兩種可能,兩種可能對應的概率均為0.5.假設該產品正品每件市場價格為100元,廢品不值錢.現處理價格為每箱8400元,遇到廢品不予更換.以一箱產品中正品的價格期望值作為決策依據.
(1)在不開箱檢驗的情況下,判斷是否可以購買;
(2)現允許開箱,有放回地隨機從一箱中抽取2件產品進行檢驗.
①若此箱出現的廢品率為,記抽到的廢品數為
,求
的分布列和數學期望;
②若已發現在抽取檢驗的2件產品中,其中恰有一件是廢品,判斷是否可以購買.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,曲線
的參數方程為
(
為參數),以坐標原點為極點,以
軸正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)求曲線的普通方程與曲線
的直角坐標方程;
(2)若與
交于
兩點,點
的極坐標為
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
經過點
,右焦點到直線
的距離為
.
(1)求橢圓的標準方程;
(2)定義為
,
兩點所在直線的斜率,若四邊形
為橢圓的內接四邊形,且
,
相交于原點
,且
,求證:
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com