精英家教網 > 高中數學 > 題目詳情

【題目】已知橢圓經過點,右焦點到直線的距離為.

1)求橢圓的標準方程;

2)定義,兩點所在直線的斜率,若四邊形為橢圓的內接四邊形,且相交于原點,且,求證:.

【答案】12)見解析

【解析】

1)根據題意易得,解出方程組即可得橢圓的標準方程;

2)設,,易得,直線的方程為,與橢圓方程聯立與韋達定理相結合可得,根據對稱性知,的斜率一個是,另一個就是,故而可得結果.

1)解:設橢圓的半焦距為,

因為橢圓經過點

所以,即

因為橢圓的右焦點到的距離為,所以.

再由解得,

所以橢圓的標準方程為.

2)證明:設,

因為,所以,所以.

設直線的方程為,

聯立,得,

,

,又,

,

.

整理得,∴.

,,,可以輪換,

,的斜率一個是,另一個就是

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知四棱錐,底面ABCD是邊長為1的正方形,,平面平面ABCD,當點C到平面ABE的距離最大時,該四棱錐的體積為(

A.B.C.D.1

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在多面體ABCDEF中,底面ABCD是邊長為2的菱形,∠BAD60°,四邊形BDEF是矩形,平面BDEF⊥平面ABCD,DE2,M為線段BF上一點,且DM⊥平面ACE

1)求BM的長;

2)求二面角ADMB的余弦值的大。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓Ey21m1)的離心率為,過點P1,0)的直線與橢圓E交于A,B不同的兩點,直線AA0垂直于直線x4,垂足為A0

(Ⅰ)求m的值;

(Ⅱ)求證:直線A0B恒過定點.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】己知{an}是等差數列,其前n項和Snn22n+b1,{bn}是等比數列,其前n項和Tn,則數列{ bn +an}的前5項和為( 。

A.37B.-27C.77D.46

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐S-ABCD中,四邊形ABCD菱形,,平面平面 ABCD, .E,F 分別是線段 SCAB 上的一點, .

(1)求證:平面SAD;

(2)求平面DEF與平面SBC所成銳二面角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】廣東省2021年高考將實行模式,其最大特點就是取消文理科,除語文、數學、外語之外,從物理、歷史這2科中自由選擇一門科目;化學、生物、政治、地理這4科中自由選擇兩門科目作為選考科目.某研究機構為了了解學生對全理(選擇物理、化學、生物)的選擇是否與性別有關,從某學校高一年級的學生中隨機抽取男生、女生個25人進行模擬選科.經統計,選擇全理的人數比不選全理的人數多10.

1)請完成下面的列聯表:

選擇全理

不選擇全理

合計

男生

5

女生

合計

2)估計有多大把握認為選擇全理與性別有關,并說明理由;

3)現從這50名學生中已經選取了男生3名,女生2名進行座談,從這5人中抽取2名代表作問卷調查,求至少抽到一名女生的概率.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.076

3.841

5.024

6.635

7.879

10.828

:,其中.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,(.

(Ⅰ)若函數有且只有一個零點,求實數的取值范圍;

(Ⅱ)設,若,若函數對恒成立,求實數的取值范圍.是自然對數的底數,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,平面平面ABCD,底面ABCD是直角梯形,,,.

1)在線段PA上找一點E,使得平面PCD,并證明;

2)在(1)的條件下,若,求點E到平面PCD的距離.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视