【題目】已知雙曲線C: =1(b>a>0)的右焦點為F,O為坐標原點,若存在直線l過點F交雙曲線C的右支于A,B兩點,使
=0,則雙曲線離心率的取值范圍是 .
【答案】e>
【解析】解:設焦點為F(c,0),直線AB:y=k(x﹣c),
設A(x1 , y1),B(x2 , y2),
則聯立直線方程和雙曲線的方程,可得
(b2﹣a2k2)x2+2ca2k2x﹣a2k2c2﹣a2b2=0,
則△=4c2a4k4+4(b2﹣a2k2)(a2k2c2+a2b2)>0,
x1+x2= ,x1x2=
,
則y1y2=k2(x1x2+c2﹣c(x1+x2))=k2 ,
由于OA⊥OB,則有x1x2+y1y2=0,
即有a2b2+a2k2c2+k2(a2b2﹣b2c2)=0,
即有k2= ,
代入判別式可得, (a2b2c2﹣a4b2)+a2b4>0,
化簡可得,a2c2﹣a4+b2c2﹣a4>0,
即有c4>2a4 , 即有e> .
∵b>a,∴e> ,
綜上所述e> .
所以答案是e> .
【考點精析】本題主要考查了雙曲線的概念的相關知識點,需要掌握平面內與兩個定點,
的距離之差的絕對值等于常數(小于
)的點的軌跡稱為雙曲線.這兩個定點稱為雙曲線的焦點,兩焦點的距離稱為雙曲線的焦距才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】 已知2件次品和3件正品放在一起,現需要通過檢測將其區分,每次隨機檢測一件產品,檢測后不放回,直到檢測出2件次品或者檢測出3件正品時檢測結束.
(1)求第一次檢測出的是次品且第二次檢測出的是正品的概率;
(2)已知每檢測一件產品需要費用100元,設X表示直到檢測出2件次品或者檢測出3件正品時所 需要的檢測費用(單位:元),求X的分布列和均值(數學期望).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線C: +
=1,直線l:
(t為參數)
(1)寫出曲線C的參數方程,直線l的普通方程.
(2)過曲線C上任意一點P作與l夾角為30°的直線,交l于點A,求|PA|的最大值與最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定義在(0,+∞)的函數f(x),其導函數為f′(x),滿足:f(x)>0且 總成立,則下列不等式成立的是( )
A.e2e+3f(e)<e2ππ3f(π)
B.e2e+3f(π)>e2ππ3f(e)
C.e2e+3f(π)<e2ππ3f(e)
D.e2e+3f(e)>e2ππ3f(π)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】以平面直角坐標系的原點為極點,以x軸的正半軸為極軸建立極坐標系.設曲線C的參數方程為 (α是參數),直線l的極坐標方程為ρcos(θ+
)=2
.
(1)求直線l的直角坐標方程和曲線C的普通方程;
(2)設點P為曲線C上任意一點,求點P到直線l的距離的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知指數函數滿足
,定義域為
的函數
是奇函數.
(1)求函數的解析式;
(2)若函數在
上有零點,求
的取值范圍;
(3)若對任意的,不等式
恒成立,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在棱長為2的正方體ABCD﹣A1B1C1D1中,E為對角線B1D上的一點,M,N為對角線AC上的兩個動點,且線段MN的長度為1.
⑴當N為對角線AC的中點且DE= 時,則三棱錐E﹣DMN的體積是;
⑵當三棱錐E﹣DMN的體積為 時,則DE= .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線C1的參數方程為 (為參數).在以坐標原點為極點,軸的正半軸為極軸的極坐標系中,曲線C2:
.
(1)求曲線C1的普通方程和C2的直角坐標方程;
(2)若C1與C2相交于A、B兩點,設點F(1,0),求 的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com