精英家教網 > 高中數學 > 題目詳情

【題目】如圖,在平面四邊形ABCD中,已知A,BAB6.AB邊上取點E,使得BE1,連接EC,ED.若∠CEDEC.

(1)sinBCE的值;

(2)CD的長.

【答案】(1) (2)7

【解析】

1)在三角形中,利用正弦定理求得.

2)證得,結合(1)中的值,求得的值,在直角三角形中求得的值,在三角形中,利用余弦定理求得.

(1)在△BEC中,由正弦定理,知

因為B,BE1CE,

所以sinBCE.

(2)因為∠CEDB,所以∠DEA=∠BCE,

所以cosDEA.

因為,所以△AED為直角三角形,又AE5,

所以ED2.

在△CED中,CD2CE2DE22CE·DE·cosCED728×2×49.

所以CD7.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知拋物線的焦點,點為拋物線上的動點,則取到最小值時點的坐標為( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數,其中.

(1)若,求函數在處的切線方程;

(2)討論的單調區間.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知某幾何體的直觀圖和三視圖如下圖所示,其正視圖為矩形,側視圖為等腰直角三角形,俯視圖為直角梯形.

(1)中點,在線段上是否存在一點,使得平面?若存在,求出的長;若不存在,請說明理由;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知向量, ,設函數,且的圖象過點和點.

(Ⅰ)求的值;

(Ⅱ)將的圖象向左平移)個單位后得到函數的圖象.若的圖象上各最高點到點的距離的最小值為1,求的單調增區間.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,曲線在點處的切線與直線垂直(其中為自然對數的底數).

(I)求的解析式及單調遞減區間;

(II)若存在 ,使函數成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某地舉辦科技博覽會,有個場館,現將個志愿者名額分配給這個場館,要求每個場館至少有一個名額且各場館名額互不相同的分配方法共有( )種

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知兩點,滿足:,,,則的最大值為________.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,已知圓Cx2+y2-4x=0及點A-10),B12

1)若直線l平行于AB,與圓C相交于M,N兩點,MN=AB,求直線l的方程;

2)若圓C上存在兩個點P,使得PA2+PB2=aa4),求a的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视