精英家教網 > 高中數學 > 題目詳情

【題目】ABC的內角A,B,C的對邊分別為a,b,c,已知(b-c)2a2bc.

(1)求sinA;

(2)若a=2,且sinB,sinA,sinC成等差數列,求△ABC的面積.

【答案】(1);(2)

【解析】試題分析:(1)先由余弦定理求解,再通過同角三角函數基本關系式進行求解(2)先由等差中項得到角角關系,再由正弦定理將角角關系轉化為邊邊關系,再利用三角形的面積公式進行求解.

試題解析:(1)由(bc)2=a2bc,得b2c2-a2bc,

,由余弦定理得cosA=,因為0<A<π,所以sinA=.

(2)由sinB,sinA,sinC成等差數列,得sinB+sinC=2sinA,

由正弦定理得bc=2a=4,所以16=(bc)2,所以16=b2c2+2bc.

由(1)得16=a2bc,所以16=4+bc,解得bc,

所以S△ABCbcsinA=××.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在四棱錐中,底面為正方形,已知,,.

1)證明:

2)求二面角的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在正方體中,為棱、的三等分點(靠近A點).

求證:(1平面;

2)求證:平面平面.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,在三棱錐中,,且,,分別是,的中點.則異面直線所成角的余弦值為___________.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】1)求過點,斜率是直線的斜率的的直線的縱截距;

2)直線經過點且與直線垂直,求直線與兩坐標軸圍成的三角形面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】我國古代數學名著《九章算術》中,將底面為直角三角形且側棱垂直于底面的三棱柱稱之為塹堵;將底面為矩形且一側棱垂直于底面的四棱錐稱之為陽馬;將四個面均為直角三角形的四面體稱之為鱉臑[biē nào].某學?茖W小組為了節約材料,擬依托校園內垂直的兩面墻和地面搭建一個塹堵形的封閉的實驗室,是邊長為2的正方形.

(1)若,上,四面體是否為鱉臑,若是,寫出其每個面的直角:若不是,請說明理由;

2)當陽馬的體積最大時,求點到平面的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,為方便金湖縣人民游覽三河風景區附近的網紅橋,現準備在河岸一側建造一個觀景臺A,已知射線PM, PN為兩邊夾角為120°的公路(長度均超過5千米),在兩條公路PM,PN上分別設立游客上下點BC,在觀景臺A和游客上下點B、C之間和游客上下點BC之間分別建造三條觀光線路AB,ACBC,測得PB=3干米,PC=5千米.

1)求線段BC的長度;

2)若∠BAC= 60°,因政府要計算修建三條觀光線路所需費用,所以要計算ABAC,BC三條線路的總長度的取值范圍,請你建立合適的數學模型,幫助政府解決這個問題.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=(2x-x2)ex-1.

(1)求函數f(x)的單調區間;

(2)若對任意x≥1,都有f(x)-mx-1+m≤0恒成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】時,,

)求,,

)猜想的關系,并用數學歸納法證明.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视