【題目】設函數f(x)=x2﹣2tx+2,其中 t∈R.
(1)若t=1,求函數f(x)在區間[0,4]上的取值范圍;
(2)若t=1,且對任意的x∈[a,a+2],都有f(x)<5,求實數a的取值范圍;
(3)若對任意的x1 , x2∈[0,4],都有f(x1)﹣f(x2)≤8,求t的取值范圍.
【答案】
(1)解:當t=1時,f(x)=x2﹣2x+2,∴f(x)的對稱軸為x=1,
∴f(x)在[0,1]上單調遞減,在(1,4]上單調遞增,
∴當x=1時,f(x)取得最小值f(1)=1,當x=4時,f(x)取得最大值f(4)=10.
∴f(x)在區間[0,4]上的取值范圍是[1,10]
(2)解:∵f(x)<5,∴x2﹣2x+2<5,即x2﹣2x﹣3<0,令g(x)=x2﹣2x﹣3,g(x)的對稱軸為x=1.
①若a+1≥1,即a≥0時,g(x)在[a,a+2]上的最大值為g(a+2)=a2+2a﹣3,
∵對任意的x∈[a,a+2],都有f(x)<5,∴g(x)=x2﹣2x﹣3<0恒成立,
∴a2+2a﹣3<0,解得0≤a<1.
②若a+1<1,即a<0時,g(x)在[a,a+2]上的最大值為g(a)=a2﹣2a﹣3,
∵對任意的x∈[a,a+2],都有f(x)<5,∴g(x)=x2﹣2x﹣3<0恒成立,
∴a2﹣2a﹣3<0,解得﹣1<a<0,
綜上,實數a的取值范圍是(﹣1,1)
(3)解:設函數f(x)在區間[0,4]上的最大值為M,最小值為m,
所以“對任意的x1,x2∈[0,4],都有|f(x1)﹣f(x2)|≤8”等價于“M﹣m≤8”.
①當t≤0時,M=f(4)=18﹣8t,m=f(0)=2.
由M﹣m=18﹣8t﹣2=16﹣8t≤8,得t≥1.
從而 t∈.
②當0<t≤2時,M=f(4)=18﹣8t,m=f(t)=2﹣t2.
由M﹣m=18﹣8t﹣(2﹣t2)=t2﹣8t+16=(t﹣4)2≤8,得 .,
③當2<t≤4時,M=f(0)=2,m=f(t)=2﹣t2.
由M﹣m=2﹣(2﹣t2)=t2≤8,得﹣2 ≤t≤2
2<t≤2 ;
④當t>4時,M=f(0)=2,m=f(4)=18﹣8t.
由M﹣m=2﹣(18﹣8t)=8t﹣16≤8,得t≤3.
從而 t∈.
綜上,t的取值范圍為區間[4﹣2 ,2
]
【解析】(1)判斷f(x)在[0,4]上的單調性,根據單調性求出f(x)的最值,得出值域;(2)令g(x)=f(x)﹣5,根據對稱軸與區間[a,a+2]的關系求出g(x)的最大值,令gmax(x)<0解出a的取值范圍.(3)設函數f(x)在區間[0,4]上的最大值為M,最小值為m,對任意的x1 , x2∈[0,4],都有f(x1)﹣f(x2)≤8等價于M﹣m≤8,結合二次函數的性質可求
【考點精析】解答此題的關鍵在于理解二次函數的性質的相關知識,掌握當時,拋物線開口向上,函數在
上遞減,在
上遞增;當
時,拋物線開口向下,函數在
上遞增,在
上遞減.
科目:高中數學 來源: 題型:
【題目】如圖,直三棱柱ABC﹣A1B1C1 , 底面△ABC中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分別為A1B1、A1A的中點.
(1)求 >的值;
(2)求證:BN⊥平面C1MN;
(3)求點B1到平面C1MN的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】【選修4-4:坐標系與參數方程】
在直角坐標系中圓C的參數方程為
(
為參數),以原點O為極點,
軸的非負半軸為極軸建立極坐標系,直線
的極坐標方程為
(1)求圓C的直角坐標方程及其圓心C的直角坐標;
(2)設直線與曲線
交于
兩點,求
的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓與
軸交于
兩點,點
為圓
上異于
的任意一點,圓
在點
處的切線與圓
在點
處的切線分別交于
,直線
和
交于點
,設
點的軌跡為曲線
.
(1)求曲線的方程;
(2)曲線與
軸正半軸交點為
,則曲線
是否存在直角頂點為
的內接等腰直角三角形
,若存在,求出所有滿足條件的
的兩條直角邊所在直線的方程,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近年來,空氣質量成為人們越來越關注的話題,空氣質量指數(,簡稱
)是定量描述空氣質量狀況的指數,空氣質量按照
大小分為六級,
為優;
為良;
為輕度污染;
為中度污染;
為重度污染;大于300為嚴重污染.環保部門記錄了2017年某月哈爾濱市10天的
的莖葉圖如下:
(1)利用該樣本估計該地本月空氣質量優良()的天數;(按這個月總共30天計算)
(2)現工作人員從這10天中空氣質量為優良的日子里隨機抽取2天進行某項研究,求抽取的2天中至少有一天空氣質量是優的概率;
(3)將頻率視為概率,從本月中隨機抽取3天,記空氣質量優良的天數為,求
的概率分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓,定義橢圓的“伴隨圓”方程為
;若拋物線
的焦點與橢圓C的一個短軸端點重合,且橢圓C的離心率為
.
(1)求橢圓C的方程和“伴隨圓”E的方程;
(2)過“伴隨圓”E上任意一點P作橢圓C的兩條切線PA,PB,A,B為切點,延長PA與“伴隨圓”E交于點Q,O為坐標原點.
(i)證明:PA⊥PB;
(ii)若直線OP,OQ的斜率存在,設其分別為,試判斷
是否為定值,若是, 求出該值;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,曲線
在點
處的切線與直線
垂直(其中
為自然對數的底數).
(1)求的解析式及單調遞減區間;
(2)是否存在常數,使得對于定義域內的任意
,
恒成立,若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在棱臺中,
與
分別是棱長為1與2的正三角形,平面
平面
,四邊形
為直角梯形,
,
,
為
中點,
(
,
).
(1)設中點為
,
,求證:
平面
;
(2)若到平面
的距離為
,求直線
與平面
所成角的正弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com