精英家教網 > 高中數學 > 題目詳情

【題目】已知數列{an}滿足a1=1,an+1= (n∈N*),若bn+1=(n﹣2λ)( +1)(n∈N*),b1=﹣ λ,且數列{bn}是單調遞增數列,則實數λ的取值范圍是

【答案】
【解析】解:∵數列{an}滿足:a1=1,an+1= (n∈N*),

∴兩邊取倒數,化為 =1+ ,變形為: +1=2 ,

∴數列{ +1}是等比數列,首項為 +1=2,公比為2,

+1=2n,

∴bn+1=(n﹣2λ) =(n﹣2λ)2n,

∵數列{bn}是單調遞增數列,n≥2時,

∴bn+1>bn,

∴(n﹣2λ)2n>(n﹣1﹣2λ)2n﹣1

化為:λ< ,

解得λ<

但是當n=1時,

b2>b1,∵b1=﹣ λ,

∴(1﹣2λ)2>﹣ λ,

解得λ< ,

∴λ∈

所以答案是:

【考點精析】通過靈活運用數列的通項公式,掌握如果數列an的第n項與n之間的關系可以用一個公式表示,那么這個公式就叫這個數列的通項公式即可以解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設等差數列{an}前n項和為Sn , 且滿足a2=2,S5=15;等比數列{bn}滿足b2=4,b5=32.
(1)求數列{an}、{bn}的通項公式;
(2)求數列{anbn}的前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】將一顆質地均勻的正方體骰子(六個面的點數分別為1,2,3,4,5,6)先后拋擲兩次,記第一次出現的點數為x,第二次出現的點數為y.
(1)求事件“x+y≤3”的概率;
(2)求事件“|x﹣y|=2”的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】過不重合的A(m2+2,m2﹣3),B(3﹣m﹣m2 , 2m)兩點的直線l傾斜角為45°,則m的取值為(
A.m=﹣1
B.m=﹣2
C.m=﹣1或2
D.m=l或m=﹣2

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知正項數列{an}的前n項和為Sn , 且 = ,a1=m,現有如下說法: ①a2=5;
②當n為奇數時,an=3n+m﹣3;
③a2+a4+…+a2n=3n2+2n.
則上述說法正確的個數為(
A.0個
B.1個
C.2個
D.3個

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知二次函數f(x)=ax2+bx+1滿足f(﹣1)=0,且x∈R時,f(x)的值域為[0,+∞).
(1)求f(x)的表達式;
(2)設函數g(x)=f(x)﹣2kx,k∈R. ①若g(x)在x∈[﹣2,2]時是單調函數,求實數k的取值范圍;
②若g(x)在x∈[﹣2,2]上的最小值g(x)min=﹣15,求k值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四邊形ABCD和ADPQ均為正方形,他們所在的平面互相垂直,動點M在線段PQ上,E、F分別為AB、BC的中點,設異面直線EM與AF所成的角為θ,則cosθ的最大值為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}的各項均為正數,Sn表示數列{an}的前n項的和,且
(1)求數列{an}的通項公式;
(2)設 ,求數列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,a,b,c分別是內角A,B,C的對邊,AB=5,cos∠ABC=
(1)若BC=4,求△ABC的面積SABC;
(2)若D是邊AC的中點,且BD= ,求邊BC的長.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视