【題目】在△ABC中,內角A,B,C的對邊分別為a,b,c,已知asinB=bsin(A).
(1)求A;
(2)D是線段BC上的點,若AD=BD=2,CD=3,求△ADC的面積.
【答案】(1)A;(2)
.
【解析】
(1)首先利用正弦定理可得asinB=bsinA,然后利用兩角差的正弦公式展開化簡即可求解.
(2)設∠B=θ,,由題意可得∠BAD=θ,∠ADC=2θ,∠DAC
θ,在△ADC中,利用正弦定理可得sinθ
cosθ,根據同角三角函數的基本關系求出sin2θ,再利用三角形的面積公式即可求解.
(1)由正弦定理可得asinB=bsinA,
則有bsinA=b(sinA
cosA),化簡可得
sinA
cosA,
可得tanA,
因為A∈(0,π),
所以A.
(2)設∠B=θ,,由題意可得∠BAD=θ,∠ADC=2θ,
∠DACθ,∠ACD
θ,
在△ADC中,,則
,
所以,可得sinθ
cosθ,
又因為sin2θ+cos2θ=1,可得sinθ,cosθ
,
則sin2θ=2sinθcosθ,
所以S△ADCsin∠ADC
.
科目:高中數學 來源: 題型:
【題目】如圖所示,動物園要圍成相同面積的長方形虎籠四間,一面可利用原有的墻,其它各面用鋼筋網圍成.
(1)現有可圍長網的材料,每間虎籠的長、寬各設計為多少時,可使每間虎籠面積最大?
(2)若使每間虎籠面積為,則每間虎籠的長、寬各設計為多少時,可使圍成四間虎籠的鋼筋網總長最?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖為我國數學家趙爽約3世紀初
在為《周髀算經》作注時驗證勾股定理的示意圖,現在提供5種顏色給其中5個小區域涂色,規定每個區域只涂一種顏色,相鄰區域顏色不同,則
區域涂色不相同的概率為
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】謝爾賓斯基三角形(英語:Sierpinskitriangle)是一種分形,由波蘭數學家謝爾賓斯基在1915年提出.具體操作是:先取一個實心正三角形(圖1),挖去一個“中心三角形”(即以原三角形各邊的中點為頂點的三角形)(圖2),然后在剩下的三個小三角形中又各挖去一個“中心三角形”(圖3),我們用黑色三角形代表剩下的面積,用上面的方法可以無限連續地作下去.若設操作次數為3(每挖去一次中心三角形算一次操作),在圖中隨機選取一個點,則此點取自黑色三角形的概率為__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】探月工程“嫦娥四號”探測器于2018年12月8日成功發射,實現了人類首次月球背面軟著陸.以嫦娥四號為任務圓滿成功為標志,我國探月工程四期和深空探測工程全面拉開序幕.根據部署,我國探月工程到2020年前將實現“繞、落、回”三步走目標.為了實現目標,各科研團隊進行積極的備戰工作.某科研團隊現正準備攻克甲、乙、丙三項新技術,甲、乙、丙三項新技術獨立被攻克的概率分別為,若甲、乙、丙三項新技術被攻克,分別可獲得科研經費
萬,
萬,
萬.若其中某項新技術未被攻克,則該項新技術沒有對應的科研經費.
(1)求該科研團隊獲得萬科研經費的概率;
(2)記該科研團隊獲得的科研經費為隨機變量,求
的分布列與數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數(
),
.
(1)若的圖象在
處的切線恰好也是
圖象的切線.
①求實數的值;
②若方程在區間
內有唯一實數解,求實數
的取值范圍.
(2)當時,求證:對于區間
上的任意兩個不相等的實數
,
,都有
成立.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】拋物線的焦點為F,過點F的直線交拋物線于A,B兩點.
(1)若,求直線AB的斜率;
(2)設點M在線段AB上運動,原點O關于點M的對稱點為C,求四邊形OACB面積的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com