精英家教網 > 高中數學 > 題目詳情

【題目】我校的課外綜合實踐研究小組欲研究晝夜溫差大小與患感冒人數多少之間的關系,他們分別到市氣象觀測站與市博愛醫院抄錄了16月份每月10號的晝夜溫差情況與因患感冒而就診的人數,得到如下資料:

110

210

310

410

510

610

晝夜溫差 (°C)

10

11

13

12

8

6

就診人數 ()

22

25

29

26

16

12

該綜合實踐研究小組確定的研究方案是:先從這六組數據中選取2組,用剩下的4組數據求線性回歸方程,再用被選取的2組數據進行檢驗.

1)若選取的是1月與6月的兩組數據,請根據25月份的數據,求出關于的線性回歸方程

2)若由線性回歸方程得到的估計數據與所選出的檢驗數據的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?

參考數據: ;

.

參考公式:回歸直線,其中.

【答案】12理想的

【解析】試題分析:(1)先求均值,代入公式得,利用,(2)先根據線性回歸方程求估計值,再與檢驗數據作差,判斷是否滿足理想條件.

試題解析:解:(1 , ,

,

,

y關于x的回歸直線方程是:

2)當, , ; 而當, ,

該小組所得線性回歸方程是理想的.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x2(lnx+lna)(a>0).
(1)當a=1時,設函數g(x)= ,求函數g(x)的單調區間與極值;
(2)設f′(x)是f(x)的導函數,若 ≤1對任意的x>0恒成立,求實數a的取值范圍;
(3)若x1 , x2∈( ,1),x1+x2<1,求證:x1x2<(x1+x24

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知fx)是定義在(0,+∞)上的增函數,且滿足fxy)=fx)+fy),f(2)=1.

(1)求f(8)的值;

(2)求不等式fx)-fx-2)>3的解集.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,

(1)求函數的單調遞增區間;

(2)當時,方程恰有兩個不同的實數根,求實數的取值范圍;

(3)將函數的圖象向右平移個單位后所得函數的圖象關于原點中心對稱,求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】定義在R上的偶函數f(x)滿足f(x+2)=f(x),且在[1,2]上是減函數,若α,β是銳角三角形的兩個內角,則( 。

A. f B. f

C. f D. f

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列說法錯誤的是

A. 對分類變量XY,隨機變量K2的觀測值k越大,則判斷“XY有關系的把握程度越小

B. 在回歸直線方程=0.2x+0.8中,當解釋變量x每增加1個單位時,預報變量平均增加0.2個單位

C. 兩個隨機變量的線性相關性越強,則相關系數的絕對值就越接近于1

D. 回歸直線過樣本點的中心(

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某公司即將推車一款新型智能手機,為了更好地對產品進行宣傳,需預估市民購買該款手機是否與年齡有關,現隨機抽取了50名市民進行購買意愿的問卷調查,若得分低于60分,說明購買意愿弱;若得分不低于60分,說明購買意愿強,調查結果用莖葉圖表示如圖所示.

(1)根據莖葉圖中的數據完成列聯表,并判斷是否有95%的把握認為市民是否購買該款手機與年齡有關?

購買意愿強

購買意愿弱

合計

20~40歲

大于40歲

合計

(2)從購買意愿弱的市民中按年齡進行分層抽樣,共抽取5人,從這5人中隨機抽取2人進行采訪,求這2人都是年齡大于40歲的概率.

附:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】執行如圖程序框圖,如果輸入的a=4,b=6,那么輸出的n=( 。

A.3
B.4
C.5
D.6

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知的展開式中,前三項系數的絕對值依次成等差數列.

(1)求展開式中的常數項;

(2)求展開式中所有整式項.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视