【題目】在正三棱柱ABC﹣A1B1C1中,點D是BC的中點.
(1)求證:A1C∥平面AB1D;
(2)設M為棱CC1的點,且滿足BM⊥B1D,求證:平面AB1D⊥平面ABM.
【答案】
(1)證明:記A1B∩AB1=O,連接OD.
∵四邊形AA1B1B為矩形,∴O是A1B的中點,
又∵D是BC的中點,∴A1C∥OD.
又∵A1C平面AB1D,OD平面AB1D,
∴A1C∥平面AB1D.
(2)證明:∵△ABC是正三角形,D是BC的中點,
∴AD⊥BC.…8分
∵平面ABC⊥平面BB1C1C,
平面ABC∩平面BB1C1C=BC,AD平面ABC,
∴AD⊥平面BB1C1C.
或利用CC1⊥平面ABC證明AD⊥平面BB1C1C.
∵BM平面BB1C1C,∴AD⊥BM.
又∵BM⊥B1D,AD∩B1D=D,AD,B1D平面AB1D,
∴BM⊥平面AB1D.
又∵BM平面ABM,
∴平面AB1D⊥平面ABM.
【解析】(1)連接A1B,記A1B∩AB1=O,連接OD,由O是A1B的中點,D是BC的中點,根據中位線可得A1C∥OD,即A1C∥平面AB1D,(2)根據面面垂直的判定定理進行證明即可.
科目:高中數學 來源: 題型:
【題目】如圖是某路段的一個檢測點對200輛汽車的車速進行檢測所得結果的頻率分布直方圖,則下列說法正確的是( )
A.平均數為62.5
B.中位數為62.5
C.眾數為60和70
D.以上都不對
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,滿足(2b﹣c)cosA=acosC.
(1)求角A;
(2)若 ,b+c=5,求△ABC的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】數列{an}的前n項和為Sn , 且Sn=n(n+1),n∈N* .
(1)求數列{an}的通項公式;
(2)若數列{bn}滿足: ,求數列{bn}的通項公式;
(3)令 ,求數列{cn}的前n項和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖是2007年在廣州舉行的全國少數民族運動會上,七位評委為某民族舞蹈打出的分數的莖葉統計圖,去掉一個最高分和一個最低分后,所剩數據的平均數和方差分別為( )
A.84,4.84
B.84,1.6
C.85,1.6
D.85,4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】由代數式的乘法法則類比推導向量的數量積的運算法則:
①mn=nm類比得到ab=ba;
②(m+n)t=mt+nt類比得到(a+b)c=ac+bc;
③(mn)t=m(nt) 類比得到(ab)c=a(bc);
④t≠0,mt=rtm=r類比得到p≠0,ap=bpa=b;
⑤|mn|=|m||n|類比得到|ab|=|a||b|;
⑥ =
類比得到
.
以上式子中,類比得到的結論正確的序號是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設數列{an}的前n項和為Sn , 且Sn+an=1,數列{bn}為等差數列,且b1+b2=b3=3.
(1)求Sn;
(2)求數列(anbn)的前n項和Tn .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com