稱滿足以下兩個條件的有窮數列為
階“期待數列”:
①;②
.
(1)若等比數列為
階“期待數列”,求公比q及
的通項公式;
(2)若一個等差數列既是
階“期待數列”又是遞增數列,求該數列的通項公式;
(3)記n階“期待數列”的前k項和為
:
(i)求證:;
(ii)若存在使
,試問數列
能否為n階“期待數列”?若能,求出所有這樣的數列;若不能,請說明理由.
(1).
或
;
(2);
(3)(i)證明見解析;(ii)不能,證明見解析.
【解析】
試題分析:(1)數列中等比數列,因此
是其前
和,故利用前前
項和公式,分
和
進行討論,可很快求出
,
或
;(2)
階等差數列是遞增數列,即公差
,其和為0,故易知數列前面的項為負,后面的項為正,即前
項為正,后
項為正,因此有
,
,這兩式用基本量或直接相減可求得
,
,因此通項公式可得;(3)(i)我們只要把數列中所有非負數項的和記為
,所有負數項的記為
,則
,
不可能比
小,同樣
不可能比
大,即
,得證;(ii)若
,則一定有
,
,且
,若數列
為n階“期待數列”,設其前
項和為
,首先
,而
,
,因此
,即
,
,從而
,于是
,那么
,矛盾出現了,故結論是否定的.
試題解析:(1)①若,由①得,
,得
,矛盾. 1分
若,則由①
=0,得
, 3分
由②得或
.
所以,.數列
的通項公式是
或
4分
(2)設等差數列的公差為
,
>0.
∵,∴
,∴
,
∵>0,由
得
,
,
由①、②得,
, 6分
兩式相減得,, ∴
,
又,得
,
∴數列的通項公式是
. 9分
(3)記中所有非負項的和為A,所有負數項的和為B,
則,
,解得
,
(i),即
. 12分
(ii)若存在,使
,由前面的證明過程知:
且, 14分
如果是
階“期待數列”,
記數列的前
項和為
,
則由(i)知,,
,而
,
,從而
,
,
又,
則, 16分
,
與
不能同時成立,
所以,對于有窮數列,若存在
使
,則數列
的和數列
不能為
階“期待數列”. 18分
考點:(1)等比數列的前和公式與通項公式;(2)等差數列的前
和公式與通項公式;(3)數列綜合題.
科目:高中數學 來源: 題型:
y |
x |
x |
y |
x |
x |
x |
1 |
2 |
x |
查看答案和解析>>
科目:高中數學 來源: 題型:
2x-1 |
查看答案和解析>>
科目:高中數學 來源: 題型:
1 |
2014 |
(2n-1)π |
2 |
查看答案和解析>>
科目:高中數學 來源:2013-2014學年上海市徐匯區高三上學期期末考試(一模)文科數學試卷(解析版) 題型:解答題
稱滿足以下兩個條件的有窮數列為
階“期待數列”:
①;②
.
(1)若數列的通項公式是
,
試判斷數列是否為2014階“期待數列”,并說明理由;
(2)若等比數列為
階“期待數列”,求公比q及
的通項公式;
(3)若一個等差數列既是
階“期待數列”又是遞增數列,求該數列的通項公式;
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com