【題目】函數f(x)= +
的值域為 .
【答案】[ ,
]
【解析】解:函數f(x)= +
,其函數的定義域為{x|0≤x≤2}.那么:f′(x)=﹣
令f′(x)=0,解得:x= ,
∴當x∈(0, )時,f′(x)>0,f(x)是單調增函數.
當x∈( ,2)時,f′(x)<0,f(x)是單調減函數.
∴當x= 時,f(x)取得極大值,即最大值為
.
當x=0時,f(x)=2,當x=2時,f(x)= .
所以得函數f(x)的值域為[ ,
].
所以答案是:[ ,
].
【考點精析】根據題目的已知條件,利用函數的值域的相關知識可以得到問題的答案,需要掌握求函數值域的方法和求函數最值的常用方法基本上是相同的.事實上,如果在函數的值域中存在一個最。ù螅⿺,這個數就是函數的最小(大)值.因此求函數的最值與值域,其實質是相同的.
科目:高中數學 來源: 題型:
【題目】在Rt△ABC中,∠C=90°,AC=4,BC=2,D是BC的中點,那么( ﹣
)
=;若E是AB的中點,P是△ABC(包括邊界)內任一點.則
的取值范圍是
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設等差數列{an}的前n項和為S,a2+a6=20,S5=40.
(1)求{an}的通項公式;
(2)設等比數列{bn}滿足b2=a3 , b3=a7.若b6=ak , 求k的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設集合A={x|4x﹣1|<9,x∈R},B={x| ≥0,x∈R},則(RA)∩B=( )
A.(﹣∞,﹣3)∪[ ,+∞)
B.(﹣3,﹣2]∪[0, )??
C.(﹣∞,﹣3]∪[ ,+∞)
D.(﹣3,﹣2]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的各項均為正數,滿足a1=1,ak+1﹣ak=ai . (i≤k,k=1,2,3,…,n﹣1)
(1)求證: ;
(2)若{an}是等比數列,求數列{an}的通項公式;
(3)設數列{an}的前n項和為Sn , 求證: .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知四邊形是正方形,
,
,
,
都是等邊三角形,
、
、
、
分別是線段
、
、
、
的中點,分別以
、
、
、
為折痕將四個等邊三角形折起,使得
、
、
、
四點重合于一點
,得到一個四棱錐.對于下面四個結論:
①與
為異面直線; ②直線
與直線
所成的角為
③平面
; ④平面
平面
;
其中正確結論的個數有( )
A. 個 B.
個 C.
個 D.
個
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設是公差不為零的等差數列,滿足
數列
的通項公式為
(1)求數列的通項公式;
(2)將數列,
中的公共項按從小到大的順序構成數列
,請直接寫出數列
的通項公式;
(3)記,是否存在正整數
,使得
成等差數列?若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com