【題目】已知函數,其中
.
(I)若a=1,求在區間[0,3]上的最大值和最小值;
(II)解關于x的不等式.
【答案】(Ⅰ)最小值為,最大值為
;(Ⅱ)答案見解析.
【解析】試題分析:(1)當時,
,根據二次函數的性質能求出
在
上的最大值和最小值;(2)當
時,原不等式等價于
,當
時,原不等式等價于
,由此根據一元二次不等式的解法能求出當
時,不等式的解集為
或
,當
時,不等式的的解集為
;當
時,不等式的解集為
;當
時,不等式的解集為
.
試題解析:()當
時,
,
∴函數在
上是減函數,在
上是增函數,
∴在
上的最小值為
,
又,
,
,
∴在
上的最大值為
.
()(i)當
時,原不等式等價于
,
∵,
∴,
此時的解集為
或
.
(ii)當時,原不等式等價于
,
由,得:
①若,則
,此時
的解集為
;
②當,原不等式無解;
③當,則
,此時,
的解集為
,
綜上,當時,不等式的解集為
或
,
當時,不等式的解集為
,
當時,不等式的解集為
,
當時,不等式的解集為
.
科目:高中數學 來源: 題型:
【題目】已知橢圓C: +
=1(a>b>0)的離心率為
,其左、右焦點為F1、F2 , 點P是坐標平面內一點,且|OP|=
,
=
,其中O為坐標原點.
(1)求橢圓C的方程;
(2)如圖,過點S(0,﹣ )的動直線l交橢圓于A、B兩點,是否存在定點M,使以AB為直徑的圓恒過這個點?若存在,求出點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,∠BAC=90°,D是BC邊的中點,AE⊥AD,AE交CB的延長線于E,則下面結論中正確的是( 。
A.△AED∽△ACB
B.△AEB∽△ACD
C.△BAE∽△ACE
D.△AEC∽△DAC
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,平行四邊形ABCD中,AE:EB=1:2.
(1)求△AEF與△CDF的周長比;
(2)如果△AEF的面積等于6cm2 , 求△CDF的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系 中,直線 的參數方程為
(
為參數),以原點為極點,
軸正半軸為極軸建立極坐標系,圓
的極坐標方程為
.
(1)寫出圓 的直角坐標方程;
(2) 為直線
上一動點,當
到圓心
的距離最小時,求
的直角坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線l:4x+3y+10=0,半徑為2的圓C與l相切,圓心C在x軸上且在直線l的右上方.
(1)求圓C的方程;
(2)過點M(1,0)的直線與圓C交于A,B兩點(A在x軸上方),問在x軸正半軸上是否存在定點N,使得x軸平分∠ANB?若存在,請求出點N的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com