【題目】以下四個命題中其中真命題個數是( 。
①為了了解800名學生的成績,打算從中抽取一個容量為40的樣本,考慮用系統抽樣,則分段的間隔k為40;
②線性回歸直線 恒過樣本點的中心
;
③隨機變量ξ服從正態分布N(2,σ2)(σ>0),若在(﹣∞,1)內取值的概率為0.1,則在(2,3)內的概率為0.4;
④若事件和
滿足關系
,則事件
和
互斥.
A. 0 B. 1 C. 2 D. 3
科目:高中數學 來源: 題型:
【題目】如圖,三棱錐P﹣ABC中,PC⊥平面ABC,PC=3,∠ACB= .D,E分別為線段AB,BC上的點,且CD=DE=
,CE=2EB=2
(1)證明:DE⊥平面PCD
(2)求二面角B﹣PD﹣C的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知△ABC的三個內角A,B,C所對的邊分別是a,b,c,B是鈍角,且 a=2bsinA.
(1)求B的大小;
(2)若△ABC的面積為 ,且b=7,求a+c的值;
(3)若b=6,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2000多年前,古希臘大數學家阿波羅尼奧斯((Apollonius)發現:平面截圓錐的截口曲線是圓錐曲線.已知圓錐的高為,
為地面直徑,頂角為
,那么不過頂點
的平面;與
夾角
時,截口曲線為橢圓;與
夾角
時,截口曲線為拋物線;與
夾角
時,截口曲線為雙曲線.如圖,底面內的直線
,過
的平面截圓錐得到的曲線為橢圓,其中與
的交點為
,可知
為長軸.那么當
在線段
上運動時,截口曲線的短軸頂點的軌跡為( )
A. 圓的部分 B. 橢圓的部分 C. 雙曲線的部分 D. 拋物線的部分
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在銳角△ABC中,內角A,B,C的對邊分別為a,b,c,且2asinB= b.
(1)求角A的大;
(2)若a=6,b+c=8,求△ABC的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是平行四邊形,∠BCD=135°,側面PAB⊥底面ABCD,∠BAP=90°,AB=AC=PA=2,E,F分別為BC,AD的中點,點M在線段PD上.
(1)求證:EF⊥平面PAC;
(2)如果直線ME與平面PBC所成的角和直線ME與平面ABCD所成的角相等,求 的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com