【題目】已知數列{an}的首項a1=1,an+1= (n∈N*).
(1)證明:數列是等比數列;
(2)設bn=,求數列{bn}的前n項和Sn.
科目:高中數學 來源: 題型:
【題目】如圖1,梯形中,
為
中點.將
沿
翻折到
的位置,如圖2.
(Ⅰ)求證:平面平面
;
(Ⅱ)求直線與平面
所成角的正弦值;
(Ⅲ)設分別為
和
的中點,試比較三棱錐
和三棱錐
(圖中未畫出)的體積大小,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
過點
,
,
分別是橢圓的左、右焦點,以原點為圓心,橢圓
的短軸長為直徑的圓與直線
相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點的直線
交橢圓
于
,
,求
內切圓面積的最大值和此時直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,曲線y=x2+mx–2與x軸交于A,B兩點,點C的坐標為(0,1).當m變化時,解答下列問題:
(1)能否出現AC⊥BC的情況?說明理由;
(2)證明過A,B,C三點的圓在y軸上截得的弦長為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在等腰梯形中,
,上底
,下底
,點
為下底
的中點,現將該梯形中的三角形
沿線段
折起,形成四棱錐
.
(1)在四棱錐中,求證:
;
(2)若平面與平面
所成二面角的平面角為
,求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙兩家外賣公司,其送餐員的日工資方案如下:甲公司的底薪70元,每單抽成3元;乙公司無底薪,40單以內(含40單)的部分每單抽成5元,超出40單的部分每單抽成7元,假設同一公司送餐員一天的送餐單數相同,現從兩家公司各隨機抽取一名送餐員,并分別記錄其100天的送餐單數,得到頻數表如下:
甲公司送餐員送餐單數頻數表
送餐單數 | 38 | 39 | 40 | 41 | 42 |
天數 | 20 | 40 | 20 | 10 | 10 |
乙公司送餐員送餐單數頻數表
送餐單數 | 38 | 39 | 40 | 41 | 42 |
天數 | 10 | 20 | 20 | 40 | 10 |
將上表中的頻率視為概率,回答下列問題:
(1)現從甲公司隨機抽取3名送餐員,求恰有2名送餐員送餐單數超過40的概率;
(2)(i)記乙公司送餐員日工資為X(單位:元),求X的數學期望;
(ii)某人擬到甲、乙兩家公司中的一家應聘送餐員,如果僅從日平均工資的角度考慮,他應該選擇去哪家公司應聘,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com