精英家教網 > 高中數學 > 題目詳情

【題目】設數列滿足,表示不超過的最大整數,( )

A. 2018 B. 2019 C. 2020 D. 2021

【答案】C

【解析】

an+2﹣2an+1+an=2,可得an+2an+1﹣(an+1an)=2,a2a1=4.利用等差數列的通項公式、累加求和方法、取整函數即可得出.

an+2﹣2an+1+an=2,∴an+2an+1﹣(an+1an)=2,

a2a1=4.

∴{an+1an}是等差數列,首項為4,公差為2.

an+1an=4+2(n﹣1)=2n+2.

n≥2時,an=(anan1)+(an1an2)+……+(a2a1)+a1

=2n+2(n﹣1)+……+2×2+2nn+1).

1.

2+2018=2020.

故選:C

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,橢圓C:(a>b>0)的離心率為,短軸長是2.

(1)求橢圓C的方程;

(2)設橢圓C的下頂點為D,過點D作兩條互相垂直的直線l1,l2,這兩條直線與橢圓C的另一個交點分別為M,N.設l1的斜率為k(k≠0),△DMN的面積為S,當,求k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點是函數,)圖象上的任意兩點,且角的終邊經過點,若時,的最小值為

1)求函數的解析式;

2)當時,不等式恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知 , .

1)若的充分不必要條件,求實數的取值范圍;

(2)若為真命題,“”為假命題,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】“函數在區間上單調”是“函數上有反函數”的( )

A.充分不必要條件B.必要不充分條件

C.充分必要條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某工廠為了對研發的一種產品進行合理定價,將該產品按事先擬定的價格進行試銷,得到如下數據:

單價x

9

9.2

9.4

9.6

9.8

10

銷量y

100

94

93

90

85

78

附:對于一組數據,其回歸直線的斜率的最小二乘估計值為; 本題參考數值:.

1)若銷量y與單價x服從線性相關關系,求該回歸方程;

2)在(1)的前提下,若該產品的成本是5元/件,問:產品該如何確定單價,可使工廠獲得最大利潤.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數的定義域為區間,若對于內任意,都有成立,則稱函數是區間的“函數”.

1)判斷函數)是否是“函數”?說明理由;

2)已知,求證:函數)是“函數”;

3)設函數,()上的“函數”,,且存在使得,試探討函數在區間上零點個數,并用圖象作出簡要的說明(結果不需要證明).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校高三(1)班的一次數學測試成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,可見部分如下:

試根據圖表中的信息解答下列問題:

(1)求全班的學生人數及分數在[70,80)之間的頻數;

(2)為快速了解學生的答題情況,老師按分層抽樣的方法從位于[70,80),[80,90)和[90,100]分數段的試卷中抽取8份進行分析,再從中任選3人進行交流,求交流的學生中,成績位于[70,80)分數段的人數X的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,曲線的參數方程為為參數).在以為極點,軸正半軸為極軸的極坐標系中,直線的極坐標方程為

(Ⅰ)求曲線的普通方程和直線的直角坐標方程;

(Ⅱ)設點,若直線與曲線交于,兩點,求的值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视