【題目】已知橢圓的右焦點為
,且點
在橢圓C上.
(1)求橢圓C的標準方程;
(2)過橢圓上異于其頂點的任意一點Q作圓
的兩條切線,切點分別為
不在坐標軸上),若直線
在x軸,y軸上的截距分別為
,證明:
為定值;
(3)若是橢圓
上不同兩點,
軸,圓E過
,且橢圓
上任意一點都不在圓E內,則稱圓E為該橢圓的一個內切圓,試問:橢圓
是否存在過焦點F的內切圓?若存在,求出圓心E的坐標;若不存在,請說明理由.
【答案】(1);(2)證明見解析;(3)
.
【解析】
(1)由焦點坐標確定出c的值,根據橢圓的性質列出a與b的方程,再將P點坐標代入橢圓方程列出關于a與b的方程,聯立求出a與b的值,確定出橢圓方程即可.
(2)由題意:確定出C1的方程,設點P(x1,y1),M(x2,y2),N(x3,y3),根據M,N不在坐標軸上,得到直線PM與直線OM斜率乘積為﹣1,確定出直線PM的方程,同理可得直線PN的方程,進而確定出直線MN方程,求出直線MN與x軸,y軸截距m與n,即可確定出所求式子的值為定值.
(3)依題意可得符合要求的圓E,即為過點F,P1,P2的三角形的外接圓.所以圓心在x軸上.根據題意寫出圓E的方程.由于圓的存在必須要符合,橢圓上的點到圓E距離的最小值是|P1E|,結合圖形可得圓心E在線段P1P2上,半徑最。钟捎邳cF已知,即可求得結論.
(1)∵橢圓C:的右焦點為F(1,0),且點P(1,
)在橢圓C上;
∴,解得a=2,b=
,
∴橢圓C的標準方程為.
(2)由題意:C1:,
設點P(x1,y1),M(x2,y2),N(x3,y3),
∵M,N不在坐標軸上,∴kPM=﹣=﹣
,
∴直線PM的方程為y﹣y2=﹣(x﹣x2),
化簡得:x2x+y2y=,①,
同理可得直線PN的方程為x3x+y3y=,②,
把P點的坐標代入①、②得,
∴直線MN的方程為x1x+y1y=,
令y=0,得m=,令x=0得n=
,
∴x1=,y1=
,
又點P在橢圓C1上,
∴()2+3(
)2=4,
則=
為定值.
(3)由橢圓的對稱性,可以設P1(m,n),P2(m,﹣n),點E在x軸上,設點E(t,0),
則圓E的方程為:(x﹣t)2+y2=(m﹣t)2+n2,
由內切圓定義知道,橢圓上的點到點E距離的最小值是|P1E|,
設點M(x,y)是橢圓C上任意一點,則|ME|2=(x﹣t)2+y2=,
當x=m時,|ME|2最小,∴m=﹣,③,
又圓E過點F,∴(﹣)2=(m﹣t)2+n2,④
點P1在橢圓上,∴,⑤
由③④⑤,解得:t=﹣或t=﹣
,
又t=﹣時,m=﹣
<﹣2,不合題意,
綜上:橢圓C存在符合條件的內切圓,點E的坐標是(﹣,0).
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=lg ,f(1)=0,當x>0時,恒有f(x)
=lgx.
(1)若不等式f(x)≤lgt的解集為A,且A(0,4],求實數t的取值范圍;
(2)若方程f(x)=lg(8x+m)的解集為,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層。某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元。該建筑物每年的能源消耗費用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關系:C(x)=若不建隔熱層,每年能源消耗費用為8萬元。設f(x)為隔熱層建造費用與20年的能源消耗費用之和。
(Ⅰ)求k的值及f(x)的表達式。
(Ⅱ)隔熱層修建多厚時,總費用f(x)達到最小,并求最小值。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2019年11月18日國際射聯步手槍世界杯總決賽在莆田市綜合體育館開幕,這是國際射聯步手槍世界杯總決賽時隔10年再度走進中國.為了增強趣味性,并實時播報現場賽況,我,F場小記者李明和播報小記者王華設計了一套播報轉碼法,發送方由明文→密文(加密),接受方由密文→明文(解密),已知加密的方法是:密碼把英文的明文(真實文)按字母分解,其中英文的的26個字母(不論大小寫)依次對應1,2,3,…,26這26個自然數通過變換公式:
,將明文轉換成密文,如
,即
變換成
,即
變換成
.若按上述規定,若王華收到的密文是
,那么原來的明文是( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的離心率為
,點A為該橢圓的左頂點,過右焦點
的直線l與橢圓交于B,C兩點,當
軸時,三角形ABC的面積為18.
求橢圓
的方程;
如圖,當動直線BC斜率存在且不為0時,直線
分別交直線AB,AC于點M、N,問x軸上是否存在點P,使得
,若存在求出點P的坐標;若不存在說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】每年六、七月份,我國長江中下游地區進入持續25天左右的梅雨季節,如圖是江南某地區年10年間梅雨季節的降雨量
單位:
的頻率分布直方圖,試用樣本頻率估計總體概率,解答下列問題:
假設每年的梅雨季節天氣相互獨立,求該地區未來三年里至少有兩年梅雨季節的降雨量超過350mm的概率.
老李在該地區承包了20畝土地種植楊梅,他過去種植的甲品種楊梅,平均每年的總利潤為28萬元
而乙品種楊梅的畝產量
畝
與降雨量之間的關系如下面統計表所示,又知乙品種楊梅的單位利潤為
元
,請你幫助老李分析,他來年應該種植哪個品種的楊梅可以使總利潤
萬元
的期望更大?并說明理由.
降雨量 | ||||
畝產量 | 500 | 700 | 600 | 400 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】自由購是一種通過自助結算購物的形式.某大型超市為調查顧客自由購的使用情況,隨機抽取了100人,調查結果整理如下:
20以下 | [20,30) | [30,40) | [40,50) | [50,60) | [60,70] | 70以上 | |
使用人數 | 3 | 12 | 17 | 6 | 4 | 2 | 0 |
未使用人數 | 0 | 0 | 3 | 14 | 36 | 3 | 0 |
(1)現隨機抽取1名顧客,試估計該顧客年齡在[30,50)且未使用自由購的概率;
(2)從被抽取的年齡在[50,70]使用的自由購顧客中,隨機抽取2人進一步了解情況,求這2人年齡都在[50,60)的概率;
(3)為鼓勵顧客使用自由購,該超市擬對使用自由購顧客贈送1個環保購物袋.若某日該超市預計有5000人購物,試估計該超市當天至少應準備多少個環保購物袋?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com