【題目】已知函數f(x)=lg ,f(1)=0,當x>0時,恒有f(x)
=lgx.
(1)若不等式f(x)≤lgt的解集為A,且A(0,4],求實數t的取值范圍;
(2)若方程f(x)=lg(8x+m)的解集為,求實數m的取值范圍.
科目:高中數學 來源: 題型:
【題目】已知是定義在
上的函數,滿足
.
(1)證明:2是函數的周期;
(2)當時,
,求
在
時的解析式,并寫出
在
(
)時的解析式;
(3)對于(2)中的函數,若關于x的方程
恰好有20個解,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓與拋物線
有一條斜率為1的公共切線
.
(1)求.
(2)設與拋物線切于點
,作點
關于
軸的對稱點
,在區域
內過
作兩條關于直線
對稱的拋物線的弦
,
.連接
.
①求證:;
②設面積為
,求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線,在x軸正半軸上任意選定一點
,過點M作與x軸垂直的直線交C于P,O兩點.
(1)設,證明:拋物線
在點P,Q處的切線方程的交點N與點M關于原點O對稱;
(2)通過解答(1),猜想求過拋物線上一點
(不為原點)的切線方程的一種做法,并加以證明.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知點F為拋物線C:(
)的焦點,過點F的動直線l與拋物線C交于M,N兩點,且當直線l的傾斜角為45°時,
.
(1)求拋物線C的方程.
(2)試確定在x軸上是否存在點P,使得直線PM,PN關于x軸對稱?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于各項均為正數的無窮數列,記
,給出下列定義:
①若存在實數,使
成立,則稱數列
為“有上界數列”;
②若數列為有上界數列,且存在
,使
成立,則稱數列
為“有最大值數列”;
③若,則稱數列
為“比減小數列”.
(1)根據上述定義,判斷數列是何種數列?
(2)若數列中,
,
,求證:數列
既是有上界數列又是比減小數列;
(3)若數列是單調遞增數列,且是有上界數列,但不是有最大值數列,求證:
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)若曲線在點
處的切線方程為
,求
的值;
(2)若的導函數
存在兩個不相等的零點,求實數
的取值范圍;
(3)當時,是否存在整數
,使得關于
的不等式
恒成立?若存在,求出
的最大值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的右焦點為
,且點
在橢圓C上.
(1)求橢圓C的標準方程;
(2)過橢圓上異于其頂點的任意一點Q作圓
的兩條切線,切點分別為
不在坐標軸上),若直線
在x軸,y軸上的截距分別為
,證明:
為定值;
(3)若是橢圓
上不同兩點,
軸,圓E過
,且橢圓
上任意一點都不在圓E內,則稱圓E為該橢圓的一個內切圓,試問:橢圓
是否存在過焦點F的內切圓?若存在,求出圓心E的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com