精英家教網 > 高中數學 > 題目詳情

【題目】設函數f(x)=4cos2x﹣4 sinxcosx的最小正周期為π(>0).
(1)求的值;
(2)若f(x)的定義域為[﹣ ],求f(x)的最大值與最小值及相應的x的值.

【答案】
(1)解:函數f(x)=4cos2x﹣4 sinxcosx

=4 ﹣4 sin2ωx

=2cos2ωx﹣2 sin2ωx+2

=﹣4sin(2ωx﹣ )+2,

又f(x)的最小正周期為T= =π,

所以=1


(2)解:∵f(x)=﹣4sin(2x﹣ )+2的定義域為[﹣ , ],即x∈[﹣ , ],

∴2x∈[﹣ , ],

2x﹣ ∈[﹣ , ],

所以sin(2x﹣ )∈[﹣1, ];

所以當sin(2x﹣ )=﹣1時,f(x)取得最大值為﹣4×(﹣1)+2=6,此時x=﹣ ;

當sin(2x﹣ )= 時,f(x)取得最小值為﹣4× +2=0,此時x=


【解析】(1)利用三角恒等變換化簡函數f(x),再根據周期為π求出ω的值;(2)當x∈[﹣ , ]時,利用正弦函數的圖象與性質求出f(x)的最大、最小值以及對應的x值.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,已知以為圓心的圓的方程為: ,以為圓心的圓的方程為:

(1)若過點的直線沿軸向左平移3個單位,沿軸向下平移4個單位后,回到原來的位置,求直線被圓截得的弦長;

(2)圓是以1為半徑,圓心在圓 上移動的動圓 ,若圓上任意一點分別作圓的兩條切線,切點為,求的取值范圍

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an},{bn}滿足a1=1,an+1=2an+1,b1=4,bn﹣bn1=an+1(n≥2).
(1)求證:數列{an+1}是等比數列;
(2)求數列{an},{bn}的通項公式.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示, 是某海灣旅游區的一角,其中,為了營造更加優美的旅游環境,旅游區管委會決定在直線海岸上分別修建觀光長廊AC,其中是寬長廊,造價是元/米, 是窄長廊,造價是元/米,兩段長廊的總造價為120萬元,同時在線段上靠近點的三等分點處建一個觀光平臺,并建水上直線通道(平臺大小忽略不計),水上通道的造價是元/米.

(1) 若規劃在三角形區域內開發水上游樂項目,要求的面積最大,那么的長度分別為多少米?

(2) 在(1)的條件下,建直線通道還需要多少錢?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,四邊形中, , ,將沿折起,使平面平面,構成四面體,則在四面體中,下列說法不正確的是( ).

A. 直線直線 B. 直線直線

C. 直線平面 D. 平面平面

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=sinx+sin(x+ ),x∈R.
(1)求f(x)的最小正周期;
(2)求f(x)的最大值和最小值;
(3)若f(α)= ,求sin 2α的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知: 、 是同一平面內的三個向量,其中 =(1,2)
(1)若| |=2 ,且 ,求 的坐標;
(2)若| |= ,且 +2 與2 垂直,求v與 的夾角θ.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在四棱柱中,底面,底面為菱形,交點,已知,

(I)求證:平面

(II)在線段上是否存在一點,使得平面,如果存在,求的值,如果不存在,請說明理由.

(III)設點內(含邊界),且,求所有滿足條件的點構成的圖形,并求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列為公差不為的等差數列, 為前項和, 的等差中項為,且.令數列的前項和為

1)求;

2)是否存在正整數成等比數列?若存在,求出所有的的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视