精英家教網 > 高中數學 > 題目詳情

【題目】已知數列為公差不為的等差數列, 為前項和, 的等差中項為,且.令數列的前項和為

1)求

2)是否存在正整數成等比數列?若存在,求出所有的的值;若不存在,請說明理由.

【答案】,

)當可以使成等比數列.

【解析】試題分析:(1)由于的等差中項為,可得,又.利用等差數列通項公式將其轉化為表示,解方程組求出其值,進而得到,結合通項公式特點可采用裂項相消法求和;

2)假設存在正整數m,n1mn),使得T1,Tm,Tn成等比數列,則,當m=2時,化為,解得一組m,n的值滿足條件.當m≥3時,由于關于m單調遞增,可知,化為5n+27≤0,由于nm1,可知上式不成立

試題解析:()因為為等差數列,設公差為,則由題意得

整理得

所以

所以

)假設存在

由()知, ,所以

成等比,則有

,(1

因為,所以

因為,當時,帶入(1)式,得

綜上,當可以使成等比數列.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設函數f(x)=4cos2x﹣4 sinxcosx的最小正周期為π(>0).
(1)求的值;
(2)若f(x)的定義域為[﹣ , ],求f(x)的最大值與最小值及相應的x的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(1)討論的單調區間;

(2)若直線的圖象恒在函數圖象的上方,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】一個均勻的正方體玩具,各個面上分別寫有1,2,3,4,5,6,將這個玩具先后拋擲2次,求:
(1)朝上的一面數相等的概率;
(2)朝上的一面數之和小于5的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,正方體的棱長為1, 分別是棱的中點,過直線的平面分別與棱交于,設, ,給出以下四個命題:

②當且僅當時,四邊形的面積最;

③四邊形周長, ,則是奇函數;

④四棱錐的體積為常函數;

其中正確命題的個數為( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】現有一枚質地均勻的骰子,連續投擲兩次,計算:
(1)一共有多少種不同的結果?
(2)其中向上的點數之和是7的結果有多少種?
(3)向上的點數之和是7的概率是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某出租車公司響應國家節能減排的號召,已陸續購買了140輛純電動汽車作為運營車輛,目前我國主流純電動汽車按續航里程數單位:公里分為3類,即類:,類: 類:,該公司對這140輛車的行駛總里程進行統計,結果如下表:

類型

已行駛總里程不超過10萬公里的車輛數

10

40

30

已行駛總里程超過10萬公里的車輛數

20

20

20

(1)從這140輛汽車中任取一輛,求該車行駛總里程超過10萬公里的概率;

(2)公司為了了解這些車的工作狀況,決定抽取了14輛車進行車況分析,按表中描述的六種情況進行分層抽樣,設從類車中抽取了輛車.

的值;

如果從這輛車中隨機選取兩輛車,求恰有一輛車行駛總里程超過10萬公里的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若要得到函數y=sin(2x﹣ )的圖象,可以把函數y=sin2x的圖象(
A.向右平移 個單位
B.向左平移 個單位
C.向右平移 個單位
D.向左平移 個單位

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的右焦點為,離心率為,設直線的斜率是,且與橢圓交于, 兩點.

Ⅰ)求橢圓的標準方程.

Ⅱ)若直線軸上的截距是,求實數的取值范圍.

Ⅲ)以為底作等腰三角形,頂點為,求的面積.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视