【題目】如圖,關于正方體ABCD﹣A1B1C1D1 , 下面結論錯誤的是( )
A.BD⊥平面ACC1A1
B.AC⊥BD
C.A1B∥平面CDD1C1
D.該正方體的外接球和內接球的半徑之比為2:1
【答案】D
【解析】解:由正方體ABCD﹣A1B1C1D1 , 知: 在A中,∵BD⊥AC,BD⊥AA1 , AC∩AA1=A,∴BD⊥平面ACC1A1 , 故A正確;
在B中,∵ABCD是正方形,∴AC⊥BD,故B正確;
在C中,∵A1B∥D1C,A1B平面CDD1C1 , D1C平面CDD1C1 , 故A1B∥平面CDD1C1 , 故C正確;
在D中,該正方體的外接球和內接球的半徑之比為 =
:1.故D錯誤.
故選:D.
在A中,由BD⊥AC,BD⊥AA1 , 知BD⊥平面ACC1A1;在B中,由ABCD是正方形,知AC⊥BD;在C中,由A1B∥D1C,知A1B∥平面CDD1C1;在D中,該正方體的外接球和內接球的半徑之比為 :1.
科目:高中數學 來源: 題型:
【題目】已知函數.
(Ⅰ) 當a=0時,求曲線f(x)在x =1處的切線方程;
(Ⅱ) 設函數,求函數h(x)的極值;
(Ⅲ) 若在[1,e](e=2.718 28…)上存在一點x0,使得
成立,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】橢圓C焦點在y軸上,離心率為 ,上焦點到上頂點距離為2﹣
.
(1)求橢圓C的標準方程;
(2)直線l與橢圓C交與P,Q兩點,O為坐標原點,△OPQ的面積S△OPQ=1,則| |2+|
|2是否為定值,若是求出定值;若不是,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=cos4x﹣2sinxcosx﹣sin4x.
(1)求f(x)的最小正周期;
(2)求f(x)的單調增區間;
(3)若 ,求f(x)的值域.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給出下列結論: ①已知函數f(x)是定義在R上的奇函數,若f(﹣1)=2,f(﹣3)=﹣1,則f(3)<f(﹣1);
②函數y=log (x2﹣2x)的單調遞增減區間是(﹣∞,0);
③已知函數f(x)是奇函數,當x≥0時,f(x)=x2 , 則當x<0時,f(x)=﹣x2;
④若函數y=f(x)的圖象與函數y=ex的圖象關于直線y=x對稱,則對任意實數x,y都有f(xy)=f(x)+f(y).
則正確結論的序號是(請將所有正確結論的序號填在橫線上).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知y=f(x)是二次函數,方程f(x)=0有兩相等實根,且f′(x)=2x+2
(1)求f(x)的解析式.
(2)求函數y=f(x)與y=﹣x2﹣4x+1所圍成的圖形的面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com