【題目】在直角坐標系xOy中,直線C1:x=﹣2,圓C2:(x﹣1)2+(y﹣2)2=1,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系.
(Ⅰ)求C1 , C2的極坐標方程;
(Ⅱ)若直線C3的極坐標方程為θ= (ρ∈R),設C2與C3的交點為M,N,求△C2MN的面積.
【答案】解:(Ⅰ)由于x=ρcosθ,y=ρsinθ,∴C1:x=﹣2 的 極坐標方程為 ρcosθ=﹣2,
故C2:(x﹣1)2+(y﹣2)2=1的極坐標方程為:
(ρcosθ﹣1)2+(ρsinθ﹣2)2=1,
化簡可得ρ2﹣(2ρcosθ+4ρsinθ)+4=0.
(Ⅱ)把直線C3的極坐標方程θ= (ρ∈R)代入
圓C2:(x﹣1)2+(y﹣2)2=1,
可得ρ2﹣(2ρcosθ+4ρsinθ)+4=0,
求得ρ1=2 ,ρ2=
,
∴|MN|=|ρ1﹣ρ2|= ,由于圓C2的半徑為1,∴C2M⊥C2N,
△C2MN的面積為 C2MC2N=
11=
.
【解析】(Ⅰ)由條件根據x=ρcosθ,y=ρsinθ求得C1 , C2的極坐標方程.(Ⅱ)把直線C3的極坐標方程代入ρ2﹣3 ρ+4=0,求得ρ1和ρ2的值,結合圓的半徑可得C2M⊥C2N,從而求得△C2MN的面積
C2MC2N的值.
科目:高中數學 來源: 題型:
【題目】已知拋物線y2=2px(p>0),其準線方程為x+1=0,直線l過點T(t,0)(t>0)且與拋物線交于A、B兩點,O為坐標原點.
(1)求拋物線方程,并證明:
的值與直線l傾斜角的大小無關;
(2)若P為拋物線上的動點,記|PT|的最小值為函數d(t),求d(t)的解析式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一個總體分為A,B兩層,其個體數之比為5:1,用分層抽樣方法從總體中抽取一個容量為12的樣本,已知B層中甲、乙都被抽到的概率為 ,則總體中的個數為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的前n項和為Sn , 且Sn=2an﹣n.
(Ⅰ)證明數列{an+1}是等比數列,求數列{an}的通項公式;
(Ⅱ)記bn= +
,求數列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解某工廠和
兩車間工人掌握某技術情況,現從這兩車間工人中分別抽查
名和
名工人,經測試,將這
名工人的測試成績編成的莖葉圖。若成績在
以上(包括
)定義為“良好”,成績在
以下定義為“合格”。已知
車間工人的成績的平均數為
,
車間工人的成績的中位數為
.
(1)求,
的值;
(2)求車間工人的成績的方差;
(3)在這名工人中,用分層抽樣的方法從 “良好”和“及格”中抽取
人,再從這
人中選
人,求至少有一人為“良好”的概率。
(參考公式:方差)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在邊長為4的長方形ABCD中,動圓Q的半徑為1,圓心Q在線段BC(含端點)上運動,P是圓Q上及內部的動點,設向量 =m
+n
(m,n為實數),則m+n的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】過拋物線y2=2px(p>0)的焦點F的直線l與拋物線交于B,C兩點,l與拋物線的準線交于點A,且|AF|=6,=2
,
(1)求拋物線方程.
(2)求|BC|.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)是定義在(0,+∞)上的單調函數,且對任意的x∈(0,+∞),都有f[f(x)﹣log2x]=3,則方程f(x)﹣f′(x)=2的解所在的區間是( )
A.(0, )
B.( ,1)
C.(1,2)
D.(2,3)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com