【題目】某企業生產甲、乙兩種產品,已知生產每噸甲產品要用A原料3噸,B原料2噸;生產每噸乙產品要用A原料1噸,B原料3噸,銷售每噸甲產品可獲得利潤5萬元,每噸乙產品可獲得利潤3萬元.該企業在一個生產周期內消耗A原料不超過13噸,B原料不超過18噸.那么在一個生產周期內該企業生產甲、乙兩種產品各多少噸可獲得最大利潤,最大利潤是多少?
科目:高中數學 來源: 題型:
【題目】已知平面內的動點P到定直線l:x=的距離與點P到定點F(
,0)之比為
.
(1)求動點P的軌跡C的方程;
(2)若點N為軌跡C上任意一點(不在x軸上),過原點O作直線AB,交(1)中軌跡C于點A、B,且直線AN、BN的斜率都存在,分別為k1、k2,問k1·k2是否為定值?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設圓的圓心在
軸上,并且過
兩點.
(1)求圓的方程;
(2)設直線與圓
交于
兩點,那么以
為直徑的圓能否經過原點,若能,請求出直線
的方程;若不能,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分10分)
(2017天津)電視臺播放甲、乙兩套連續劇,每次播放連續劇時,需要播放廣告.已知每次播放甲、乙兩套連續劇時,連續劇播放時長、廣告播放時長、收視人次如下表所示:
連續劇播放時長(分鐘) | 廣告播放時長(分鐘) | 收視人次(萬) | |
甲 | 70 | 5 | 60 |
乙 | 60 | 5 | 25 |
已知電視臺每周安排的甲、乙連續劇的總播放時間不多于600分鐘,廣告的總播放時間不少于30分鐘,且甲連續劇播放的次數不多于乙連續劇播放次數的2倍.分別用,
表示每周計劃播出的甲、乙兩套連續劇的次數.
(1)用,
列出滿足題目條件的數學關系式,并畫出相應的平面區域;
(2)問電視臺每周播出甲、乙兩套連續劇各多少次,才能使收視人次最多?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從某居民區隨機抽取10個家庭,獲得第i個家庭的月收入xi(單位:千元)與月儲蓄yi(單位:千元)的數據資料,算得 =80,
=20,
yi=184,
=720.
(1)求家庭的月儲蓄y對月收入x的線性回歸方程y=bx+a;
(2)判斷變量x與y之間是正相關還是負相關;
(3)若該居民區某家庭月收入為7千元,預測該家庭的月儲蓄.
附:線性回歸方程y=bx+a中,b= ,a=
﹣b
,其中
,
為樣本平均值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓,且橢圓上任意一點到左焦點的最大距離為
,最小距離為
.
(1)求橢圓的方程;
(2)過點的動直線
交橢圓
于
兩點,試問:在坐標平面上是否存在一個定點
,使得以線段
為直徑的圓恒過點
?若存在,求出點
的坐標:若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,
底面
,底面
是直角梯形,
,
,
是
上的一點.
(Ⅰ)求證:平面平面
;
(Ⅱ)如圖(1),若,求證:
平面
;
(Ⅲ)如圖(2),若是
的中點,
,求二面角
的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖在三棱錐P﹣ABC中,D,E,F分別為棱PC,AC,AB的中點,已知AD=PD,PA=6,BC=8,DF=5,求證:
(1)直線PA∥平面DEF;
(2)平面DEF⊥平面ABC.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com