【題目】設函數y=f(x)圖象上不同的兩點M(x1 , y1),N(x2 , y2)處的切線斜率分別是kM , kN , 那么規定Φ(M,N)= 叫做曲線y=f(x)在點M與點N之間的“彎曲度”.設曲線f(x)=x3+2上不同兩點M(x1 , y1),N(x2 , y2),且x1x2=1,則該曲線在點M與點N之間的“彎曲度”的取值范圍是 .
科目:高中數學 來源: 題型:
【題目】已知函數f(x)與g(x)的圖象關于原點對稱,且它們的圖象拼成如圖所示的“Z”形折線段ABOCD,不含A(0,1),B(1,1),O(0,0),C(﹣1,﹣1),D(0,﹣1)五個點.則滿足題意的函數f(x)的一個解析式為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】△ABC的內角A,B,C的對邊分別為a,b,c,已知2cosC(acosB+bcosA)=c.
(1)求∠C;
(2)若c= ,△ABC的面積為
,求△ABC的周長;
(3)若c= ,求△ABC的周長的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點(x0 , y0)在x2+y2=r2(r>0)外,則直線x0x+y0y=r2與圓x2+y2=r2的位置關系為( )
A.相交
B.相切
C.相離
D.相交、相切、相離三種情況均有可能
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】P(x0 , y0)(x0≠±a)是雙曲線E: 上一點,M,N分別是雙曲線E的左右頂點,直線PM,PN的斜率之積為
.
(1)求雙曲線的離心率;
(2)過雙曲線E的右焦點且斜率為1的直線交雙曲線于A,B兩點,O為坐標原點,C為雙曲線上一點,滿足 ,求λ的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】△ABC的內角A,B,C的對邊分別為a,b,c,已知a(sinA﹣sinB)=(c﹣b)(sinC+sinB) (Ⅰ)求角C;
(Ⅱ)若c= ,△ABC的面積為
,求△ABC的周長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C: =1(a>b>0),F(﹣c,0)為其左焦點,點P(﹣
,0),A1 , A2分別為橢圓的左、右頂點,且|A1A2|=4,|PA1|=
|A1F|.
(1)求橢圓C的方程;
(2)過點A1作兩條射線分別與橢圓交于M、N兩點(均異于點A1),且A1M⊥A1N,證明:直線MN恒過x軸上的一個定點.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com