【題目】“”是“對任意的正數
,
”的( )
A. 充分不必要條件 B. 必要不充分條件 C. 充要條件 D. 既不充分也不必要條件
【答案】A
【解析】分析:根據基本不等式,我們可以判斷出“”?“對任意的正數x,2x+
≥1”與“對任意的正數x,2x+
≥1”?“a=
”真假,進而根據充要條件的定義,即可得到結論.
解答:解:當“a=”時,由基本不等式可得:
“對任意的正數x,2x+≥1”一定成立,
即“a=”?“對任意的正數x,2x+
≥1”為真命題;
而“對任意的正數x,2x+≥1的”時,可得“a≥
”
即“對任意的正數x,2x+≥1”?“a=
”為假命題;
故“a=”是“對任意的正數x,2x+
≥1的”充分不必要條件
故選A
【題型】單選題
【結束】
9
【題目】如圖是一幾何體的平面展開圖,其中為正方形,
,
分別為
,
的中點,在此幾何體中,給出下面四個結論:①直線
與直線
異面;②直線
與直線
異面;③直線
平面
;④平面
平面
.
其中一定正確的選項是( )
A. ①③ B. ②③ C. ②③④ D. ①③④
科目:高中數學 來源: 題型:
【題目】如圖,正三棱柱ABC-A1B1C1的底面邊長是2,側棱長是,D是AC的中點。
(1)求證:B1C∥平面A1BD;
(2)求二面角A1-BD-A的大;
(3)在線段AA1上是否存在一點E,使得平面B1C1E⊥平面A1BD,若存在,求出AE的長;若不存在,說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中(為坐標原點),已知兩點
,
,且三角形
的內切圓為圓
,從圓
外一點
向圓引切線
,
為切點。
(1)求圓的標準方程.
(2)已知點,且
,試判斷點
是否總在某一定直線
上,若是,求出直線
的方程;若不是,請說明理由.
(3)已知點在圓
上運動,求
的最大值和最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某奶茶公司對一名員工進行測試以便確定其考評級別.公司準備了兩種不同的奶茶共5 杯,其顏色完全相同,并且其中3杯為奶茶,另外2杯為
奶茶,公司要求此員工一一品嘗后,從5杯奶茶中選出2杯奶茶.若該員工2杯都選
奶茶,則評為優秀;若2 杯選對1杯
奶茶,則評為良好;否則評為及格.假設此人對
和
兩種奶茶沒有鑒別能力.
(Ⅰ)求此人被評為優秀的概率;(Ⅱ)求此人被評為良好及以上的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的右焦點為
,
為直線
上一點,線段
交
于點
,若
,則
__________.
【答案】
【解析】
由條件橢圓:
∴
橢圓的右焦點為F,可知F(1,0),
設點A的坐標為(2,m),則=(1,m),
∴,
∴點B的坐標為,
∵點B在橢圓C上,
∴,解得:m=1,
∴點A的坐標為(2,1),.
答案為: .
【題型】填空題
【結束】
16
【題目】四棱錐中,
面
,
是平行四邊形,
,
,點
為棱
的中點,點
在棱
上,且
,平面
與
交于點
,則異面直線
與
所成角的正切值為__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知
(1)證明函數f ( x )的圖象關于軸對稱;
(2)判斷在
上的單調性,并用定義加以證明;
(3)當x∈[1,2]時函數f (x )的最大值為,求此時a的值。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com