【題目】中,
,
,
,
中,
,則
的取值范圍是( )
A. B.
C. D.
【答案】C
【解析】
根據題意,建立直角坐標系,設點D的坐標,然后分析點D的位置,利用直線的夾角公式,求得點D的軌跡方程為圓的一部分,然后利用圓的相關知識求出最大最小值即可.
由題,以點B為坐標原點,AB所在直線為x軸,BC所在直線為y軸建立直角坐標系;
設點,因為
,所以由題易知點D可能在直線AB的上方,也可能在AB的下方;
當點D可能在直線AB的上方;
直線BD的斜率;直線AD的斜率
由兩直線的夾角公式可得:
化簡整理的
可得點D的軌跡是以點為圓心,半徑
的圓,且點D在AB的上方,所以是圓在AB上方的劣弧部分;
此時CD的最短距離為:
當當點D可能在直線AB的下方;
同理可得點D的軌跡方程:
此時點D的軌跡是以點為圓心,半徑
的圓,且點D在AB的下方,所以是圓在AB下方的劣弧部分;
此時CD的最大距離為:
所以CD的取值范圍為
科目:高中數學 來源: 題型:
【題目】已知雙曲線
的兩條漸近線與拋物線
的準線分別交于
,
兩點.若雙曲線
的離心率為
,
的面積為
,
為坐標原點,則拋物線
的焦點坐標為 ( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數為偶函數,且函數
的圖象的兩相鄰對稱軸間的距離為
.
(1)求的值;
(2)將函數的圖象向右平移
個單位長度后,再將得到的圖象上各點的橫坐標伸長為原來的4倍,縱坐標不變,得到函數
的圖象,求函數
的單調遞減區間.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,以原點為極點,
軸的非負半軸為極軸建立極坐標系,已知曲線
的極坐標方程為
,過點
的直線
(
為參數)與曲線
相交于
兩點.
(1)試寫出曲線的直角坐標方程和直線
的普通方程;
(2)求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知直線
∶
和圓
∶
,
是直線
上一點,過點
作圓
的兩條切線,切點分別為
.
(1)若,求點
坐標;
(2)若圓上存在點
,使得
,求點
的橫坐標的取值范圍;
(3)設線段的中點為
,
與
軸的交點為
,求線段
長的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點是橢圓
上任一點,點
到直線
的距離為
,到點
的距離為
,且
.直線
與橢圓
交于不同兩點
(
都在
軸上方),且
.
(1)求橢圓的方程;
(2)當為橢圓與
軸正半軸的交點時,求直線
方程;
(3)對于動直線,是否存在一個定點,無論
如何變化,直線
總經過此定點?若存在,求出該定點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,
,(其中
,
為自然對數的底數,
……).
(1)令,若
對任意的
恒成立,求實數
的值;
(2)在(1)的條件下,設為整數,且對于任意正整數
,
,求
的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com