【題目】如圖,三棱柱ABC﹣A1B1C1中,點A1在平面ABC內的射影O為AC的中點,A1O=2,AB⊥BC,AB=BC= 點P在線段A1B上,且cos∠PAO=
,則直線AP與平面A1AC所成角的正弦值為 .
科目:高中數學 來源: 題型:
【題目】已知拋物線C:y2=﹣4x. (Ⅰ)已知點M在拋物線C上,它與焦點的距離等于5,求點M的坐標;
(Ⅱ)直線l過定點P(1,2),斜率為k,當k為何值時,直線l與拋物線:只有一個公共點;兩個公共點;沒有公共點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,三個內角是A,B,C的對邊分別是a,b,c,其中c=10,且 .
(1)求證:△ABC是直角三角形;
(2)設圓O過A,B,C三點,點P位于劣弧AC上,∠PAB=60°,求四邊形ABCP的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓E: =1(a>b>0)的離心率為
,右焦點為F,橢圓與y軸的正半軸交于點B,且|BF|=
.
(1)求橢圓E的方程;
(2)若斜率為1的直線l經過點(1,0),與橢圓E相交于不同的兩點M,N,在橢圓E上是否存在點P,使得△PMN的面積為 ,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,多面體ABCDPE的底面ABCD是平行四邊形,AD=AB=2,
=0,PD⊥平面ABCD,EC∥PD,且PD=2EC=2,則二面角A﹣PB﹣E的大小為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若a,b是函數f(x)=x2﹣px+q(p>0,q>0)的兩個不同的零點,且a,b,﹣4這三個數可適當排序后成等差數列,也可適當排序后成等比數列,則p+q的值等于( )
A.16
B.10
C.26
D.9
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】觀察下列等式: (sin )﹣2+(sin
)﹣2=
×1×2;
(sin )﹣2+(sin
)﹣2+(sin
)﹣2+sin(
)﹣2=
×2×3;
(sin )﹣2+(sin
)﹣2+(sin
)﹣2+…+sin(
)﹣2=
×3×4;
(sin )﹣2+(sin
)﹣2+(sin
)﹣2+…+sin(
)﹣2=
×4×5;
…
照此規律,
(sin )﹣2+(sin
)﹣2+(sin
)﹣2+…+(sin
)﹣2= .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com