精英家教網 > 高中數學 > 題目詳情

已知數列 ,滿足數列的前項和為,.
(Ⅰ)求數列的通項公式;           
(Ⅱ)求證:;
(Ⅲ)求證:當時,

(1)
(2)
(3)根據題意,利用作差法來比較大小得到證明。

解析試題分析:解:(1)由,代入

整理得:,從而有,
是首項為1,公差為1的等差數列,
          (5分)
(2)




                  … (10分)
(3) 

由(2)知



               (16分)
考點:數列的求和以及通項公式的求解
點評:主要是考查了數列的通項公式與前n項和的關系式的運用,屬于中檔題。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知n∈N*,數列{dn}滿足dn,數列{an}滿足and1d2d3+…+d2n.又知數列{bn}中,b1=2,且對任意正整數m,n.
(1)求數列{an}和數列{bn}的通項公式;
(2)將數列{bn}中的第a1項,第a2項,第a3項,…,第an項刪去后,剩余的項按從小到大的順序排成新數列{cn},求數列{cn}的前2013項和T2013.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知等差數列的首項為,公差為,且不等式的解集為
(I)求數列的通項公式;
(II)若,求數列項和

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

為數列{}的前項和,已知,2N
(Ⅰ)求,,并求數列{}的通項公式;
(Ⅱ)求數列{}的前項和。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)等差數列的各項均為正數,,前項和為,等比數列中,,,是公比為64的等比數列.
(Ⅰ)求;   
(Ⅱ)證明:.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設等差數列的前n項和為,已知, .
(1)求數列的通項公式;
(2)設數列的前n項和為,證明:;

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知數列的前項和滿足,等差數列滿足,
(1)求數列、的通項公式;
(2)設,數列的前項和為,求證 .

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知等差數列首項,公差為,且數列是公比為4的等比數列,
(1)求
(2)求數列的通項公式及前項和;
(3)求數列的前項和 .

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)
是等差數列,是各項都為正數的等比數列,且,
(Ⅰ)求的通項公式;
(Ⅱ)求數列的前n項和

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视