【題目】已知拋物線上一點
到其準線的距離為
.
(1)求拋物線的方程;
(2)如圖、
、
為拋物線
上三個點,
,若四邊形
為菱形,求四邊形
的面積.
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,直線
的參數方程為
(
為參數),以坐標原點為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(Ⅰ)求直線的普通方程和曲線
的直角坐標方程;
(Ⅱ)設為曲線
上的點,
,垂足為
,若
的最小值為
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2018年反映社會現實的電影《我不是藥神》引起了很大的轟動,治療特種病的創新藥研發成了當務之急.為此,某藥企加大了研發投入,市場上治療一類慢性病的特效藥品的研發費用
(百萬元)和銷量
(萬盒)的統計數據如下:
研發費用 | 2 | 3 | 6 | 10 | 13 | 15 | 18 | 21 |
銷量 | 1 | 1 | 2 | 2.5 | 3.5 | 3.5 | 4.5 | 6 |
(1)根據數據用最小二乘法求出與
的線性回歸方程
(系數用分數表示,不能用小數);
(2)該藥企準備生產藥品的三類不同的劑型
,
,
,
,
合格的概率分別為
,
,
,第二次檢測時,三類劑型
,
,
合格的概率分別為
,
,
.兩次檢測過程相互獨立,設經過兩次檢測后
,
,
三類劑型合格的種類數為
,求
的分布列與數學期望.
附:(1)(2)
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的標準方程是
,設
是橢圓
的左焦點,
為直線
上任意一點,過
做
的垂線交橢圓
于點
,
.
(1)證明:線段平分線段
(其中
為坐標原點);
(2)當最小時,求點
的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在正三棱柱(側棱垂直于底面,且底面三角形
是等邊三角形)中,
,
分別是
的中點.
(1)求證:平面∥平面
;
(2)在線段上是否存在一點
使
平面
?若存在,確定點
的位置;若不存在,也請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[選修4—4:坐標系與參數方程]
以平面直角坐標系的原點為極點,x軸的正半軸為極軸,建立極坐標系,兩種坐標系中取相同的長度單位.已知直線l的參數方程是 (t為參數),圓C的極坐標方程是ρ=4cos θ,求直線l被圓C截得的弦長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】橢圓的離心率是
,過點
做斜率為
的直線
,橢圓
與直線
交于
兩點,當直線
垂直于
軸時
.
(Ⅰ)求橢圓的方程;
(Ⅱ)當變化時,在
軸上是否存在點
,使得
是以
為底的等腰三角形,若存在求出
的取值范圍,若不存在說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2016年春節期間全國流行在微信群里發、搶紅包,現假設某人將688元發成手氣紅包50個,產生的手氣紅包頻數分布表如表:
(I)求產生的手氣紅包的金額不小于9元的頻率;
(Ⅱ)估計手氣紅包金額的平均數(同一組中的數據用該組區間的中點值作代表);
(Ⅲ)在這50個紅包組成的樣本中,將頻率視為概率.
(i)若紅包金額在區間[21,25]內為最佳運氣手,求搶得紅包的某人恰好是最佳運氣手的概率;
(ii)隨機抽取手氣紅包金額在[1,5)∪[﹣21,25]內的兩名幸運者,設其手氣金額分別為m,n,求事件“|m﹣n|>16”的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】明代商人程大位在公元1592年編撰完成《算法統宗》一書.書中有如下問題:“今有女子善織,初日遲,次日加倍,第三日轉速倍增,第四日又倍增,織成絹六丈七尺五寸.問各日織若干?”意思是:“有一位女子善于織布,第一天由于不熟悉有點慢,第二天起每天織的布都是前一天的2倍,已知她前四天共織布6丈7尺5寸,問這位女子每天織布多少?”根據文中的已知條件,可求得該女了第一天織布________尺,若織布一周(7天),共織________尺.(其中1丈為10尺,1尺為10寸)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com