精英家教網 > 高中數學 > 題目詳情

【題目】如圖,在底面是菱形的四棱錐中,ECD中點,,,已知.

1)證明:;

2)求二面角的平面角的正弦值.

【答案】1)證明見解析;(2.

【解析】

1)要證明線線垂直,需線證明線面垂直,由條件可證明,并且根據邊長可證明可知AB,BPAP三邊適合勾股定理,則ABBP,這樣有AB⊥面APE,可證明線線垂直;

(2)以中點為坐標原點,軸,軸,作垂直于平面

利用幾何關系求各得坐標,并求平面和平面的法向量,利用法向量求二面角的余弦值,再求正弦值.

1)連結AE,由于ECD中點,且∠ADC=60°,故AEAB,

又有,而,,

故可知AB,BP,AP三邊適合勾股定理,則ABBP,

那么有AB⊥面APE,而,故.

2)如圖建系,其中OAD中點,易知,,,

對于P的坐標,易知,有,記P在面ABCD上的投影為H,

可得,,即.

,

可求得平面APE的法向量(不唯一),

同理可求得平面BPE的法向量,

很顯然該二面角的余弦值的絕對值為,那么它的正弦值為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某小學舉辦“父母養育我,我報父母恩”的活動,對六個年級(一年級到六年級的年級代碼分別為1,2…,6)的學生給父母洗腳的百分比y%進行了調查統計,繪制得到下面的散點圖.

(1)由散點圖看出,可用線性回歸模型擬合y與x的關系,請用相關系數加以說明;

(2)建立y關于x的回歸方程,并據此預計該校學生升入中學的第一年(年級代碼為7)給父母洗腳的百分比.

附注:參考數據:

參考公式:相關系數,若r>0.95,則y與x的線性相關程度相當高,可用線性回歸模型擬合y與x的關系.回歸方程中斜率與截距的最小二乘估計公式分別為 ,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某大學開學期間,該大學附近一家快餐店招聘外賣騎手,該快餐店提供了兩種日工資結算方案:方案規定每日底薪100元,外賣業務每完成一單提成2元;方案規定每日底薪150元,外賣業務的前54單沒有提成,從第55單開始,每完成一單提成5.該快餐店記錄了每天騎手的人均業務量,現隨機抽取100天的數據,將樣本數據分為七組,整理得到如圖所示的頻率分布直方圖.

1)隨機選取一天,估計這一天該快餐店的騎手的人均日外賣業務量不少于65單的概率;

2)從以往統計數據看,新聘騎手選擇日工資方案的概率為,選擇方案的概率為.若甲、乙、丙、丁四名騎手分別到該快餐店應聘,四人選擇日工資方案相互獨立,求至少有兩名騎手選擇方案的概率,

3)若僅從人日均收入的角度考慮,請你為新聘騎手做出日工資方案的選擇,并說明理由.(同組中的每個數據用該組區間的中點值代替)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(1)當時,求不等式的解集;

(2)當時,求方程的解;

(3)若,求實數的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線的焦點為,直線:交拋物線兩點,

(1)若的中點為,直線的斜率為,證明:為定值;

(2)求面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在多面體中,兩兩垂直,四邊形是邊長為2的正方形,ACDGEF,且.

1)證明:平面.

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在五面體中,四邊形是正方形,,,.

1)求證:;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】生男生女都一樣,女兒也是傳后人.由于某些地區仍然存在封建傳統思想,頭胎的男女情況可能會影響生二孩的意愿,現隨機抽取某地200戶家庭進行調查統計.200戶家庭中,頭胎為女孩的頻率為0.5,生二孩的頻率為0.525,其中頭胎生女孩且生二孩的家庭數為60.

1)完成下列列聯表,并判斷能否有95%的把握認為是否生二孩與頭胎的男女情況有關;

生二孩

不生二孩

合計

頭胎為女孩

60

頭胎為男孩

合計

200

2)在抽取的200戶家庭的樣本中,按照分層抽樣的方法在生二孩的家庭中抽取了7戶,進一步了解情況,在抽取的7戶中再隨機抽取4戶,求抽到的頭胎是女孩的家庭戶數的分布列及數學期望.

附:

0.15

0.05

0.01

0.001

2.072

3.841

6.635

10.828

(其中.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的中心為原點,焦點為,離心率為,不與坐標軸垂直的直線與橢圓交于,兩點.

1)若為線段的中點,求直線的方程.

2)若點是直線上一點,點在橢圓上,且滿足,設直線與直線的斜率分別為,,問是否為定值?若是,請求出的值;若不是,請說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视