【題目】已知△ABC的三內角A,B,C所對的邊分別是a,b,c,△ABC的面積S= 且sinA=
.
(1)求sinB;
(2)若邊c=5,求△ABC的面積S.
【答案】
(1)解:由余弦定理有c2=a2+b2﹣2abcosC,∴a2+b2﹣c2=2abcosC,
則 ,又
,
∴cosC=sinC,tanC=1,在△ABC中 ,
∵ ,在△ABC中
或
,但A+B+C=π,
∴ ,
∴ =
,
sinB= =
×
=
(2)解:由正弦定理有 ,又c=5,∴
,得b=7,
∴S= bcsinA=
=
【解析】(1)利用余弦定理、三角形面積計算公式可得C,再利用同角三角函數基本關系式、三角形內角和定理、和差公式即可得出.(2)利用正弦定理、三角形面積計算公式即可得出.
【考點精析】關于本題考查的正弦定理的定義和余弦定理的定義,需要了解正弦定理:;余弦定理:
;
;
才能得出正確答案.
科目:高中數學 來源: 題型:
【題目】已知a,b,c分別是△ABC的內角A,B,C的對邊,sin2B=2sinAsinC.
(1)若a=b,求cosB的值;
(2)若B=60°,△ABC的面積為4 ,求b的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定義在R上的函數y=f(x)對任意的x都滿足f(x+1)=﹣f(x),當﹣1≤x<1時,f(x)=x3 , 若函數g(x)=f(x)﹣loga|x|至少6個零點,則a取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分14分)
設△ABC三個內角A、B、C所對的邊分別為a,b,c. 已知C=,acosA=bcosB.
(1)求角A的大;
(2)如圖,在△ABC的外角∠ACD內取一點P,使得PC=2.過點P分別作直線CA、CD的垂線PM、PN,垂足分別是M、N.設∠PCA=α,求PM+PN的最大值及此時α的取值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列an}的前n項和為Sn , a1=1,a2=2,且點(Sn , Sn+1)在直線y=tx+1上.
(1)求Sn及an;
(2)若數列{bn}滿足bn= (n≥2),b1=1,數列{bn}的前n項和為Tn , 求證:當n≥2時,Tn<2.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】天氣預報說,未來三天每天下雨的概率都是0.6,用1、2、3、4表示不下雨,用5、6、7、8、9、0表示下雨,利用計算機生成下列20組隨機數,則未來三天恰有兩天下雨的概率大約是 .
757 220 582 092 103 000 181 249 414 993
010 732 680 596 761 835 463 521 186 289.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列命題錯誤的是( )
A.如果平面α⊥平面β,那么平面α內所有直線都垂直于平面β
B.如果平面α⊥平面β,那么平面α內一定存在直線平行于平面β
C.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γ
D.如果平面α不垂直于平面β,那么平面α內一定不存在直線垂直于平面β
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校從參加高三模擬考試的學生中隨機抽取60名學生,將其數學成績(均為整數)分成六組[90,100),[100,110),…,[140,150]后得到如圖部分頻率分布直方圖.觀察圖形的信息,回答下列問題.
(1)從該校高三模擬考試的成績中隨機抽取一份,利用隨機事件頻率估計概率,求數學分數恰在[120,130)內的頻率;
(2)估計本次考試的中位數;
(3)用分層抽樣的方法在分數段為[110,130)的學生中抽取一個容量為6的樣本,將該樣本看成一個總體,從中任取2人,求至多有1人在分數段[120,130)內的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com