【題目】已知函數f(x)(x∈R)滿足f(1)=1,且f(x)的導數f′(x)< ,則不等式f(x2)<
的解集為 .
科目:高中數學 來源: 題型:
【題目】制定投資計劃時,不僅要考慮可能獲得的盈利,而且要考慮可能出現的虧損.某投資人打算投資甲、乙兩個項目.根據預測,甲、乙項目可能的最大盈利率分別為100%和50%,可能的最大虧損分別為30%和10%.投資人計劃投資金額不超過10萬元,要求確?赡艿馁Y金虧損不超過1.8萬元.問投資人對甲、乙兩個項目各投資多少萬元,才能使可能的盈利最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市春節期間7家超市的廣告費支出(萬元)和銷售額
(萬元)數據如下:
超市 | A | B | C | D | E | F | G |
廣告費支出 | 1 | 2 | 4 | 6 | 11 | 13 | 19 |
銷售額 | 19 | 32 | 40 | 44 | 52 | 53 | 54 |
(1)若用線性回歸模型擬合與
的關系,求
關于
的線性回歸方程;
(2)用二次函數回歸模型擬合與
的關系,可得回歸方程:
,
經計算二次函數回歸模型和線性回歸模型的分別約為
和
,請用
說明選擇哪個回歸模型更合適,并用此模型預測
超市廣告費支出為3萬元時的銷售額.
參數數據及公式:,
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】氣象意義上從春季進入夏季的標志為連續5天的日平均溫度均不低于22℃.現有甲、乙、丙三地連續5天的日平均溫度的記錄數據:(記錄數據都是正整數)
①甲地5個數據的中位數為24,眾數為22;
②乙地5個數據的中位數為27,總體均值為24;
③丙地5個數據中有一個數據是32,總體均值為26,總體方差為10.8.
則肯定進入夏季的地區有_____.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的上、下焦點分別為
,上焦點
到直線
的距離為3,橢圓
的離心率
.
(1)求橢圓的方程;
(2)橢圓,設過點
斜率存在且不為0的直線交橢圓
于
兩點,試問
軸上是否存在點
,使得
?若存在,求出點
的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若三角形三邊的長度為連續的三個自然數,則稱這樣的三角形為“連續整邊三角形”。下列說法正確的是( )
A. “連續整邊三角形”只能是銳角三角形
B. “連續整邊三角形”不可能是鈍角三角形
C. 若“連續整邊三角形”中最大角是最小角的2倍,則這樣的三角形有且僅有1個
D. 若“連續整邊三角形”中最大角是最小角的2倍,則這樣的三角形可能有2個
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,直三棱柱ABC﹣A1B1C1中,AA1=AB=AC=2,D,E,F分別是B1A1 , CC1 , BC的中點,AE⊥A1B1 , D為棱A1B1上的點.
(1)證明:DF⊥AE;
(2)求平面DEF與平面ABC所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某班在一次個人投籃比賽中,記錄了在規定時間內投進個球的人數分布情況:
進球數 | 0 | 1 | 2 | 3 | 4 | 5 |
投進 | 1 | 2 | 7 | 2 |
其中和
對應的數據不小心丟失了,已知進球3個或3個以上,人均投進4個球;進球5個或5個以下,人均投進2.5個球.
(1)投進3個球和4個球的分別有多少人?
(2)從進球數為3,4,5的所有人中任取2人,求這2人進球數之和為8的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《張丘建算經》是公元5世紀中國古代內容豐富的數學著作,書中卷上第二十三問:“今有女善織,日益功疾,初日織五尺,今一月織九匹三丈.問日益幾何?”其意思為“有個女子織布,每天比前一天多織相同量的布,第一天織五尺,一個月(按30天計)共織390尺.問:每天多織多少布?”已知1匹=4丈,1丈=10尺,估算出每天多織的布的布約有( )
A.0.55尺
B.0.53尺
C.0.52尺
D.0.5尺
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com