精英家教網 > 高中數學 > 題目詳情

【題目】有人發現,多看電視容易使人變冷漠,如表是一個調查機構對此現象的調查結果:

冷漠

不冷漠

總計

多看電視

68

42

110

少看電視

20

38

58

總計

88

80

168

P(K2≥k)

0.025

0.010

0.005

0.001

k

5.024

6.635

7.879

10.828

K2= ≈11.377,下列說法正確的是(
A.大約有99.9%的把握認為“多看電視與人變冷漠”有關系
B.大約有99.9%的把握認為“多看電視與人變冷漠”沒有關系
C.某人愛看電視,則他變冷漠的可能性為99.9%
D.愛看電視的人中大約有99.9%會變冷漠

【答案】A
【解析】解:∵K2= ≈11.377>10.828,對照表格:

P(K2≥k0

0.100

0.050

0.025

0.010

0.001

k0

2.706

3.841

5.024

6.635

10.828

∴大約有99.9%的把握認為“多看電視與人變冷漠”有關系.
故選A.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】關于函數f(x)=lg (x≠0,x∈R)有下列命題:
①函數y=f(x)的圖象關于y軸對稱;
②在區間(﹣∞,0)上,函數y=f(x)是減函數;
③函數f(x)的最小值為lg2;
④在區間(1,+∞)上,函數f(x)是增函數.
其中正確命題序號為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,兩種坐標系中取相同的長度單位,直線的參數方程為為參數),圓的極坐標方程為.

(1)求直線的普通方程與圓的直角坐標方程;

(2)設圓與直線交于兩點,若點的直角坐標為,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】20名學生某次數學考試成績(單位:分)的頻率分布直方圖如圖:

(1)求頻率分布直方圖中a的值;
(2)分別求出成績落在[50,60)與[60,70)中的學生人數;
(3)從成績在[50,70)的學生任選2人,求此2人的成績都在[60,70)中的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=ex﹣1﹣x.
(1)若存在x∈[﹣1,ln ],滿足a﹣ex+1+x<0成立,求實數a的取值范圍.
(2)當x≥0時,f(x)≥(t﹣1)x恒成立,求實數t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若函數f(x)為定義在R上的奇函數,且在(0,+∞)內是增函數,又f(2)=0,則不等式x5f(x)>0的解集為(
A.(﹣2,0)∪(2,+∞)
B.(﹣∞,﹣2)∪(0,2)
C.(﹣2,0)∪(0,2)
D.(﹣∞,﹣2)∪(2,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某單位組織職工去某地參觀學習,需包車前往,甲車隊說:“如果領隊買一張全票,其余人可享受7折優惠!币臆囮犝f:“你們屬于團體票,按原價的7.5折優惠!边@兩個車隊的原價、車型都是一樣的,試根據單位去的人數比較兩車隊的收費哪家更優惠。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】共享單車是指企業在校園、地鐵站點、公交站點、居民區、商業區、公共服務區等提供自行車單車共享服務,是共享經濟的一種新形態,一個共享單車企業在某個城市就“一天中一輛單車的平均成本(單位:元)與租用單車的數量(單位:車輛)之間的關系”進行調查研究,在調查過程中進行了統計,得出相關數據見下表:

租用單車數量(千輛)

2

3

4

5

8

每天一輛車平均成本(元)

3.2

2.4

2

1.9

1.7

根據以上數據,研究人員分別借助甲、乙兩種不同的回歸模型,得到兩個回歸方程,方程甲: ,方程乙: .

(1)為了評價兩種模型的擬合效果,完成以下任務:

①完成下表(計算結果精確到0.1)(備注: , 稱為相應于點的殘差(也叫隨機誤差));

租用單車數量(千輛)

2

3

4

5

8

每天一輛車平均成本(元)

3.2

2.4

2

1.9

1.7

模型甲

估計值

2.4

2.1

1.6

殘差

0

0.1

模型乙

估計值

2.3

2

1.9

殘差

0.1

0

0

②分別計算模型甲與模型乙的殘差平方和,并通過比較 的大小,判斷哪個模型擬合效果更好.

(2)這個公司在該城市投放共享單車后,受到廣大市民的熱烈歡迎,共享單車常常供不應求,于是該公司研究是否增加投放,根據市場調查,這個城市投放8千輛時,該公司平均一輛單車一天能收入10元,6元收入的概率分別為0.6,0.4;投放1萬輛時,該公司平均一輛單車一天能收入10元,6元收入的概率分別為0.4,0.6,問該公司應該投放8千輛還是1萬輛能獲得更多利潤?(按(1)中擬合效果較好的模型計算一天中一輛單車的平均成本,利潤=收入—成本).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】根據“2015年國民經濟和社會發展統計公報” 中公布的數據,從2011 年到2015 年,我國的

第三產業在中的比重如下:

年份

年份代碼

第三產業比重

(1)在所給坐標系中作出數據對應的散點圖;

(2)建立第三產業在中的比重關于年份代碼的回歸方程;

(3)按照當前的變化趨勢,預測2017 年我國第三產業在中的比重.

附注: 回歸直線方程中的斜率和截距的最小二乘估計公式分別為:

, .

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视