【題目】有人發現,多看電視容易使人變冷漠,如表是一個調查機構對此現象的調查結果:
冷漠 | 不冷漠 | 總計 | |
多看電視 | 68 | 42 | 110 |
少看電視 | 20 | 38 | 58 |
總計 | 88 | 80 | 168 |
P(K2≥k) | 0.025 | 0.010 | 0.005 | 0.001 |
k | 5.024 | 6.635 | 7.879 | 10.828 |
K2= ≈11.377,下列說法正確的是( )
A.大約有99.9%的把握認為“多看電視與人變冷漠”有關系
B.大約有99.9%的把握認為“多看電視與人變冷漠”沒有關系
C.某人愛看電視,則他變冷漠的可能性為99.9%
D.愛看電視的人中大約有99.9%會變冷漠
科目:高中數學 來源: 題型:
【題目】關于函數f(x)=lg (x≠0,x∈R)有下列命題:
①函數y=f(x)的圖象關于y軸對稱;
②在區間(﹣∞,0)上,函數y=f(x)是減函數;
③函數f(x)的最小值為lg2;
④在區間(1,+∞)上,函數f(x)是增函數.
其中正確命題序號為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
以坐標原點為極點,以
軸正半軸為極軸,建立極坐標系,兩種坐標系中取相同的長度單位,直線
的參數方程為
(
為參數),圓
的極坐標方程為
.
(1)求直線的普通方程與圓
的直角坐標方程;
(2)設圓與直線
交于
兩點,若點
的直角坐標為
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】20名學生某次數學考試成績(單位:分)的頻率分布直方圖如圖:
(1)求頻率分布直方圖中a的值;
(2)分別求出成績落在[50,60)與[60,70)中的學生人數;
(3)從成績在[50,70)的學生任選2人,求此2人的成績都在[60,70)中的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ex﹣1﹣x.
(1)若存在x∈[﹣1,ln ],滿足a﹣ex+1+x<0成立,求實數a的取值范圍.
(2)當x≥0時,f(x)≥(t﹣1)x恒成立,求實數t的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若函數f(x)為定義在R上的奇函數,且在(0,+∞)內是增函數,又f(2)=0,則不等式x5f(x)>0的解集為( )
A.(﹣2,0)∪(2,+∞)
B.(﹣∞,﹣2)∪(0,2)
C.(﹣2,0)∪(0,2)
D.(﹣∞,﹣2)∪(2,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某單位組織職工去某地參觀學習,需包車前往,甲車隊說:“如果領隊買一張全票,其余人可享受7折優惠!币臆囮犝f:“你們屬于團體票,按原價的7.5折優惠!边@兩個車隊的原價、車型都是一樣的,試根據單位去的人數比較兩車隊的收費哪家更優惠。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】共享單車是指企業在校園、地鐵站點、公交站點、居民區、商業區、公共服務區等提供自行車單車共享服務,是共享經濟的一種新形態,一個共享單車企業在某個城市就“一天中一輛單車的平均成本(單位:元)與租用單車的數量(單位:車輛)之間的關系”進行調查研究,在調查過程中進行了統計,得出相關數據見下表:
租用單車數量 | 2 | 3 | 4 | 5 | 8 |
每天一輛車平均成本 | 3.2 | 2.4 | 2 | 1.9 | 1.7 |
根據以上數據,研究人員分別借助甲、乙兩種不同的回歸模型,得到兩個回歸方程,方程甲: ,方程乙:
.
(1)為了評價兩種模型的擬合效果,完成以下任務:
①完成下表(計算結果精確到0.1)(備注: ,
稱為相應于點
的殘差(也叫隨機誤差));
租用單車數量 | 2 | 3 | 4 | 5 | 8 | |
每天一輛車平均成本 | 3.2 | 2.4 | 2 | 1.9 | 1.7 | |
模型甲 | 估計值 | 2.4 | 2.1 | 1.6 | ||
殘差 | 0 | 0.1 | ||||
模型乙 | 估計值 | 2.3 | 2 | 1.9 | ||
殘差 | 0.1 | 0 | 0 |
②分別計算模型甲與模型乙的殘差平方和及
,并通過比較
,
的大小,判斷哪個模型擬合效果更好.
(2)這個公司在該城市投放共享單車后,受到廣大市民的熱烈歡迎,共享單車常常供不應求,于是該公司研究是否增加投放,根據市場調查,這個城市投放8千輛時,該公司平均一輛單車一天能收入10元,6元收入的概率分別為0.6,0.4;投放1萬輛時,該公司平均一輛單車一天能收入10元,6元收入的概率分別為0.4,0.6,問該公司應該投放8千輛還是1萬輛能獲得更多利潤?(按(1)中擬合效果較好的模型計算一天中一輛單車的平均成本,利潤=收入—成本).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】根據“2015年國民經濟和社會發展統計公報” 中公布的數據,從2011 年到2015 年,我國的
第三產業在中的比重如下:
年份 | |||||
年份代碼 | |||||
第三產業比重 |
(1)在所給坐標系中作出數據對應的散點圖;
(2)建立第三產業在中的比重
關于年份代碼
的回歸方程;
(3)按照當前的變化趨勢,預測2017 年我國第三產業在中的比重.
附注: 回歸直線方程中的斜率和截距的最小二乘估計公式分別為:
,
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com