精英家教網 > 高中數學 > 題目詳情

(本小題滿分10分)在直角坐標平面內,以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程是,直線的參數方程是為參數)。
求極點在直線上的射影點的極坐標;
、分別為曲線、直線上的動點,求的最小值。

(1)
(2)

解析試題分析:解:(1)由直線的參數方程消去參數,
的一個方向向量為,
,則
,則,得:,
代入直線的參數方程得,化為極坐標為。
(2),
,
,則到直線的距離,
。
 
考點:直線的參數方程,以及極坐標才考查
點評:解決的關鍵是對于直線與圓的位置關系的熟練運用,屬于基礎題。易錯點就是公式間的轉換問題。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

設橢圓C: 過點, 且離心率

(Ⅰ)求橢圓C的方程;
(Ⅱ)過右焦點的動直線交橢圓于點,設橢圓的左頂點為連接且交動直線,若以MN為直徑的圓恒過右焦點F,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分12分)
已知橢圓C的中心在坐標原點,焦點在x軸上,橢圓右頂點到直線的距離為,離心率
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知A為橢圓與y軸負半軸的交點,設直線,是否存在實數m,使直線與(Ⅰ)中的橢圓有兩個不同的交點M、N,是∣AM∣=∣AN∣,若存在,求出 m的值;若不存在,請說明理由。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓 經過點其離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設直線與橢圓相交于A、B兩點,以線段為鄰邊作平行四邊形OAPB,其中頂點P在橢圓上,為坐標原點.求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)
已知拋物線經過橢圓的兩個焦點.設,又不在軸上的兩個交點,若的重心(中線的交點)在拋物線上,

(1)求的方程.
(2)有哪幾條直線與都相切?(求出公切線方程)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題12分)已知橢圓的左、右焦點分別為F1、F2,其中F2也是拋物線的焦點,M是C1與C2在第一象限的交點,且  
(I)求橢圓C1的方程;  (II)已知菱形ABCD的頂點A、C在橢圓C1上,頂點B、D在直線上,求直線AC的方程。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分13分)
已知橢圓的兩焦點在軸上, 且兩焦點與短軸的一個頂點的連線構成斜邊長為2的等腰直角三角形。
(Ⅰ)求橢圓的方程;
(Ⅱ)過點的動直線交橢圓C于A、B兩點,試問:在坐標平面上是否存在一個定點Q,使得以AB為直徑的圓恒過點Q ?若存在求出點Q的坐標;若不存在,請說明理由。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在平面直角坐標系中,的兩個頂點、的坐標分別是(-1,0),(1,0),點的重心,軸上一點滿足,且.
(1)求的頂點的軌跡的方程;
(2)不過點的直線與軌跡交于不同的兩點、,當時,求的關系,并證明直線過定點.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,是拋物線(為正常數)上的兩個動點,直線AB與x軸交于點P,與y軸交于點Q,且

(Ⅰ)求證:直線AB過拋物線C的焦點;
(Ⅱ)是否存在直線AB,使得若存在,求出直線AB的方程;若不存在,請說明理由。

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视