【題目】已知函數.
(1)討論的單調性;
(2)若,設
,證明:
,
,使
.
科目:高中數學 來源: 題型:
【題目】某公司甲、乙兩個班組分別試生產同一種規格的產品,已知此種產品的質量指標檢測分數不小于70時,該產品為合格品,否則為次品,現隨機抽取兩個班組生產的此種產品各100件進行檢測,其結果如下表:
質量指標檢測分數 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
甲班組生產的產品件數 | 7 | 18 | 40 | 29 | 6 |
乙班組生產的產品件數 | 8 | 12 | 40 | 32 | 8 |
(1)根據表中數據,估計甲、乙兩個班組生產該種產品各自的不合格率;
(2)根據以上數據,完成下面的2×2列聯表,并判斷是否有95%的把握認為該種產品的質量與生產產品的班組有關?
甲班組 | 乙班組 | 合計 | |
合格品 | |||
次品 | |||
合計 |
(3)若按合格與不合格比例,從甲班組生產的產品中抽取4件產品,從乙班組生產的產品中抽取5件產品,記事件A:從上面4件甲班組生產的產品中隨機抽取2件,且都是合格品;事件B:從上面5件乙班組生產的產品中隨機抽取2件,一件是合格品,一件是次品,試估計這兩個事件哪一種情況發生的可能性大.
附:
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】有下列命題:
①函數與
的圖象關于
軸對稱;
②若函數,則
,都有
;
③若函數,
在
上單調遞增,則
;
④若函數,則函數
的最小值為
.
其中真命題的序號是______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知四棱錐的底面ABCD是邊長為2的正方形,且
.若四棱錐P-ABCD的五個頂點在以4為半徑的同一球面上,當PA最長時,則
______________;四棱錐P-ABCD的體積為______________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下圖是某機械零件的幾何結構,該幾何體是由兩個相同的直四棱柱組合而成的,且前后,左右、上下均對稱,每個四棱柱的底面都是邊長為2的正方形,高為4,且兩個四棱柱的側棱互相垂直.則這個幾何體的體積為________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,直線l的參數方程為為參數),以原點O為極點,x軸的正半軸為極軸建立極坐標系,圓C的極坐標方程為ρ=asinθ(a≠0).
(1)求圓C的直角坐標方程與直線l的普通方程;
(2)設直線l截圓C的弦長是半徑長的倍,求a的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《山東省高考改革試點方案》規定:從2017年秋季高中入學的新生開始,不分文理科;2020年開始,高考總成績由語數外3門統考科目和物理、化學等六門選考科目構成.將每門選考科目的考生原始成績從高到低劃分為A、B+、B、C+、C、D+、D、E共8個等級.參照正態分布原則,確定各等級人數所占比例分別為3%、7%、16%、24%、24%、16%、7%、3%.選考科目成績計入考生總成績時,將A至E等級內的考生原始成績,依照等比例轉換法則,分別轉換到[91,100]、[81,90]、[71,80]、[61,70]、[51,60]、[41,50]、[31,40]、[21,30]八個分數區間,得到考生的等級成績.
某校高一年級共2000人,為給高一學生合理選科提供依據,對六個選考科目進行測試,其中物理考試原始成績基本服從正態分布N(60,169).
(Ⅰ)求物理原始成績在區間(47,86)的人數;
(Ⅱ)按高考改革方案,若從全省考生中隨機抽取3人,記X表示這3人中等級成績在區間[61,80]的人數,求X的分布列和數學期望.
(附:若隨機變量,則
,
,
)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com