【題目】已知等差數列的前n項和為
,
,公差為
若
,求數列
的通項公式;
是否存在d,n使
成立?若存在,試找出所有滿足條件的d,n的值,并求出數列
的通項公式;若不存在,請說明理由.
科目:高中數學 來源: 題型:
【題目】如圖,M為△ABC的中線AD的中點,過點M的直線分別交線段AB、AC于點P、Q兩點,設,
,記
.
(1)求的值;
(2)求函數的解析式(指明定義域);
(3)設,
,若對任意
,總存在
,使得
成立,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為響應市政府提出的以新舊動能轉換為主題的發展戰略,某公司花費100萬元成本購買了1套新設備用于擴大生產,預計該設備每年收入100萬元,第一年該設備的各種消耗成本為8萬元,且從第二年開始每年比上一年消耗成本增加8萬元.
(1)求該設備使用x年的總利潤y(萬元)與使用年數x(x∈N*)的函數關系式(總利潤=總收入﹣總成本);
(2)這套設備使用多少年,可使年平均利潤最大?并求出年平均利潤的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,底面
為等腰梯形,
,其中點
在以
為直徑的圓上,
,
,
,平面
平面
.
(1)證明:平面
.
(2)設點是線段
(不含端點)上一動點,當三棱錐
的體積為1時,求異面直線
與
所成角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD為正方形,平面PAD⊥平面ABCD,點M在線段PPD//平面MAC,PA=PD=,AB=4.
(I)求證:M為PB的中點;
(II)求二面角B-PD-A的大;
(III)求直線MC與平面BDP所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,圓
的參數方程為
(
為參數),過點
作斜率為
的直線
與圓
交于
,
兩點.
(1)若圓心到直線
的距離為
,求
的值;
(2)求線段中點
的軌跡方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某品牌手機廠商推出新款的旗艦機型,并在某地區跟蹤調查得到這款手機上市時間(第周)和市場占有率(
)的幾組相關數據如下表:
(1)根據表中的數據,用最小二乘法求出關于
的線性回歸方程
;
(2)根據上述線性回歸方程,預測在第幾周,該款旗艦機型市場占有率將首次超過(最后結果精確到整數).
參考公式:,
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com